CRAN Package Check Results for Package BatchExperiments

Last updated on 2025-12-05 18:49:36 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.4.4 6.49 128.08 134.57 OK
r-devel-linux-x86_64-debian-gcc 1.4.4 4.21 101.16 105.37 ERROR
r-devel-linux-x86_64-fedora-clang 1.4.4 35.00 170.35 205.35 OK
r-devel-linux-x86_64-fedora-gcc 1.4.4 33.00 156.97 189.97 OK
r-devel-windows-x86_64 1.4.4 8.00 136.00 144.00 OK
r-patched-linux-x86_64 1.4.4 6.46 123.74 130.20 OK
r-release-linux-x86_64 1.4.4 5.72 122.76 128.48 OK
r-release-macos-arm64 1.4.4 OK
r-release-macos-x86_64 1.4.4 5.00 117.00 122.00 OK
r-release-windows-x86_64 1.4.4 8.00 134.00 142.00 OK
r-oldrel-macos-arm64 1.4.4 OK
r-oldrel-macos-x86_64 1.4.4 5.00 113.00 118.00 OK
r-oldrel-windows-x86_64 1.4.4 10.00 177.00 187.00 OK

Check Details

Version: 1.4.4
Check: examples
Result: ERROR Running examples in ‘BatchExperiments-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: addExperiments > ### Title: Add experiemts to the registry. > ### Aliases: addExperiments Experiment > > ### ** Examples > > ### EXAMPLE 1 ### > reg = makeExperimentRegistry(id = "example1", file.dir = tempfile()) Creating dir: /tmp/RtmpuuZGsr/file2bc0ead3b1310 Saving registry: /tmp/RtmpuuZGsr/file2bc0ead3b1310/registry.RData > > # Define a problem: > # Subsampling from the iris dataset. > data(iris) > subsample = function(static, ratio) { + n = nrow(static) + train = sample(n, floor(n * ratio)) + test = setdiff(seq(n), train) + list(test = test, train = train) + } > addProblem(reg, id = "iris", static = iris, + dynamic = subsample, seed = 123) Writing problem files: /tmp/RtmpuuZGsr/file2bc0ead3b1310/problems/iris_static.RData, /tmp/RtmpuuZGsr/file2bc0ead3b1310/problems/iris_dynamic.RData > > # Define algorithm "tree": > # Decision tree on the iris dataset, modeling Species. > tree.wrapper = function(static, dynamic, ...) { + library(rpart) + mod = rpart(Species ~ ., data = static[dynamic$train, ], ...) + pred = predict(mod, newdata = static[dynamic$test, ], type = "class") + table(static$Species[dynamic$test], pred) + } > addAlgorithm(reg, id = "tree", fun = tree.wrapper) Writing algorithm file: /tmp/RtmpuuZGsr/file2bc0ead3b1310/algorithms/tree.RData > > # Define algorithm "forest": > # Random forest on the iris dataset, modeling Species. > forest.wrapper = function(static, dynamic, ...) { + library(randomForest) + mod = randomForest(Species ~ ., data = static, subset = dynamic$train, ...) + pred = predict(mod, newdata = static[dynamic$test, ]) + table(static$Species[dynamic$test], pred) + } > addAlgorithm(reg, id = "forest", fun = forest.wrapper) Writing algorithm file: /tmp/RtmpuuZGsr/file2bc0ead3b1310/algorithms/forest.RData > > # Define problem parameters: > pars = list(ratio = c(0.67, 0.9)) > iris.design = makeDesign("iris", exhaustive = pars) > > # Define decision tree parameters: > pars = list(minsplit = c(10, 20), cp = c(0.01, 0.1)) > tree.design = makeDesign("tree", exhaustive = pars) > > # Define random forest parameters: > pars = list(ntree = c(100, 500)) > forest.design = makeDesign("forest", exhaustive = pars) > > # Add experiments to the registry: > # Use previously defined experimental designs. > addExperiments(reg, prob.designs = iris.design, + algo.designs = list(tree.design, forest.design), + repls = 2) # usually you would set repls to 100 or more. Adding 12 experiments / 24 jobs to DB. > > # Optional: Short summary over problems and algorithms. > summarizeExperiments(reg) prob algo .count 1 iris forest 8 2 iris tree 16 > > # Optional: Test one decision tree job and one expensive (ntree = 1000) > # random forest job. Use findExperiments to get the right job ids. > do.tests = FALSE > if (do.tests) { + id1 = findExperiments(reg, algo.pattern = "tree")[1] + id2 = findExperiments(reg, algo.pattern = "forest", + algo.pars = (ntree == 1000))[1] + testJob(reg, id1) + testJob(reg, id2) + } > > # Submit the jobs to the batch system > submitJobs(reg) Saving conf: /tmp/RtmpuuZGsr/file2bc0ead3b1310/conf.RData Submitting 24 chunks / 24 jobs. Cluster functions: Interactive. Auto-mailer settings: start=none, done=none, error=none. SubmitJobs |+ | 0% (00:00:00) SubmitJobs |+ | 0% (00:00:00) SubmitJobs |++ | 4% (00:00:00) SubmitJobs |++++ | 8% (00:00:11) SubmitJobs |++++++ | 12% (00:00:07) SubmitJobs |++++++++ | 17% (00:00:05) SubmitJobs |++++++++++ | 21% (00:00:07) SubmitJobs |++++++++++++ | 25% (00:00:06) SubmitJobs |++++++++++++++ | 29% (00:00:04) SubmitJobs |++++++++++++++++ | 33% (00:00:06) SubmitJobs |++++++++++++++++++ | 38% (00:00:05) SubmitJobs |++++++++++++++++++++ | 42% (00:00:05) SubmitJobs |++++++++++++++++++++++ | 46% (00:00:04) SubmitJobs |++++++++++++++++++++++++ | 50% (00:00:04) SubmitJobs |+++++++++++++++++++++++++++ | 54% (00:00:04) SubmitJobs |+++++++++++++++++++++++++++++ | 58% (00:00:03) SubmitJobs |+++++++++++++++++++++++++++++++ | 62% (00:00:03) SubmitJobs |+++++++++++++++++++++++++++++++++ | 67% (00:00:03) SubmitJobs |+++++++++++++++++++++++++++++++++++ | 71% (00:00:02) SubmitJobs |+++++++++++++++++++++++++++++++++++++ | 75% (00:00:02) SubmitJobs |+++++++++++++++++++++++++++++++++++++++ | 79% (00:00:01) SubmitJobs |+++++++++++++++++++++++++++++++++++++++++ | 83% (00:00:01) SubmitJobs |+++++++++++++++++++++++++++++++++++++++++++ | 88% (00:00:01) SubmitJobs |+++++++++++++++++++++++++++++++++++++++++++++ | 92% (00:00:00) SubmitJobs |+++++++++++++++++++++++++++++++++++++++++++++++ | 96% (00:00:00) SubmitJobs |+++++++++++++++++++++++++++++++++++++++++++++++++| 100% (00:00:00) Sending 24 submit messages... Might take some time, do not interrupt this! > > # Calculate the misclassification rate for all (already done) jobs. > reduce = function(job, res) { + n = sum(res) + list(mcr = (n-sum(diag(res)))/n) + } > res = reduceResultsExperiments(reg, fun = reduce) Syncing registry ... Reducing 24 results... reduceResultsExperiments |+ | 0% (00:00:00) reduceResultsExperiments |+++++++++++++++++++++++++++++++++++| 100% (00:00:00) > print(res) id prob ratio algo cp minsplit repl mcr ntree 1 1 iris 0.67 tree 0.01 10 1 0.04000000 NA 2 2 iris 0.67 tree 0.01 10 2 0.04000000 NA 3 3 iris 0.67 tree 0.01 20 1 0.04000000 NA 4 4 iris 0.67 tree 0.01 20 2 0.04000000 NA 5 5 iris 0.67 tree 0.10 10 1 0.04000000 NA 6 6 iris 0.67 tree 0.10 10 2 0.04000000 NA 7 7 iris 0.67 tree 0.10 20 1 0.04000000 NA 8 8 iris 0.67 tree 0.10 20 2 0.04000000 NA 9 9 iris 0.67 forest NA NA 1 0.04000000 100 10 10 iris 0.67 forest NA NA 2 0.06000000 100 11 11 iris 0.67 forest NA NA 1 0.04000000 500 12 12 iris 0.67 forest NA NA 2 0.04000000 500 13 13 iris 0.90 tree 0.01 10 1 0.00000000 NA 14 14 iris 0.90 tree 0.01 10 2 0.06666667 NA 15 15 iris 0.90 tree 0.01 20 1 0.00000000 NA 16 16 iris 0.90 tree 0.01 20 2 0.06666667 NA 17 17 iris 0.90 tree 0.10 10 1 0.00000000 NA 18 18 iris 0.90 tree 0.10 10 2 0.06666667 NA 19 19 iris 0.90 tree 0.10 20 1 0.00000000 NA 20 20 iris 0.90 tree 0.10 20 2 0.06666667 NA 21 21 iris 0.90 forest NA NA 1 0.00000000 100 22 22 iris 0.90 forest NA NA 2 0.06666667 100 23 23 iris 0.90 forest NA NA 1 0.00000000 500 24 24 iris 0.90 forest NA NA 2 0.06666667 500 > > # Aggregate results using 'ddply' from package 'plyr': > # Calculate the mean over all replications of identical experiments > # (same problem, same algorithm and same parameters) > library(plyr) Error in library(plyr) : there is no package called ‘plyr’ Execution halted Flavor: r-devel-linux-x86_64-debian-gcc