The GaussSuppression
package contains several
easy-to-use wrapper functions and in this vignette we will look at the
SuppressSmallCounts
function. In this function, small
frequencies are primary suppressed. Then, as always in this package,
secondary suppression is performed using the Gauss method.
We begin by creating datasets to be used below. The first examples
are based on dataset_a
, which has six rows.
library(GaussSuppression)
<- SSBtoolsData("example1")
dataset <- dataset[dataset$year == "2014", -4]
dataset_a <- dataset[dataset$year == "2015", -4]
dataset_b
dataset_a#> age geo eu freq
#> 1 young Spain EU 5
#> 2 young Iceland nonEU 2
#> 3 young Portugal EU 0
#> 4 old Spain EU 6
#> 5 old Iceland nonEU 3
#> 6 old Portugal EU 4
In the function description (?SuppressSmallCounts
), the
only visible parameter is maxN
in addition to the
parameters considered in the define-tables vignette. In the first
example, we use maxN = 1
which means that zeros and ones
are primary suppressed.
SuppressSmallCounts(data = dataset_a,
dimVar = c("age", "geo"),
freqVar = "freq",
maxN = 1)
#> [extend0 6*3->6*3]
#> GaussSuppression_anySum: ...........
#> age geo freq primary suppressed
#> 1 Total Total 20 FALSE FALSE
#> 2 Total Iceland 5 FALSE FALSE
#> 3 Total Portugal 4 FALSE FALSE
#> 4 Total Spain 11 FALSE FALSE
#> 5 old Total 13 FALSE FALSE
#> 6 old Iceland 3 FALSE TRUE
#> 7 old Portugal 4 FALSE TRUE
#> 8 old Spain 6 FALSE FALSE
#> 9 young Total 7 FALSE FALSE
#> 10 young Iceland 2 FALSE TRUE
#> 11 young Portugal 0 TRUE TRUE
#> 12 young Spain 5 FALSE FALSE
A formatted version of this output is given in Table 1 below. Primary suppressed cells are underlined and labeled in red, while the secondary suppressed cells are labeled in purple.
Table 1:
dimVar = c("age", "geo"), maxN = 1
age | Iceland | Portugal | Spain | Total |
---|---|---|---|---|
young | 2 | 0 | 5 | 7 |
old | 3 | 4 | 6 | 13 |
Total | 5 | 4 | 11 | 20 |
The same output is obtained if microdata is sent as input as illustrated by de code below.
<- SSBtools::MakeMicro(dataset_a, "freq")[-4]
microdata_a <- SuppressSmallCounts(data = microdata_a,
output dimVar = c("age", "geo"),
maxN = 1)
#> [preAggregate 20*3->5*3]
#> [extend0 5*3->6*3]
#> GaussSuppression_anySum: ...........
A related point is that the third row of the table can be omitted
(data = dataset_a[-3, ]
) since the frequency is zero. When
the frequency is zero, there is no underlying microdata. Later in this
vignette, we address scenarios where the inclusion of zeros may be
important.
A more advanced example is obtained by including the variable “eu”.
SuppressSmallCounts(data = dataset_a,
dimVar = c("age", "geo", "eu"),
freqVar = "freq",
maxN = 2)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySum: .............
#> age geo freq primary suppressed
#> 1 Total Total 20 FALSE FALSE
#> 2 Total EU 15 FALSE FALSE
#> 3 Total nonEU 5 FALSE FALSE
#> 4 Total Iceland 5 FALSE FALSE
#> 5 Total Portugal 4 FALSE FALSE
#> 6 Total Spain 11 FALSE FALSE
#> 7 old Total 13 FALSE FALSE
#> 8 old EU 10 FALSE TRUE
#> 9 old nonEU 3 FALSE TRUE
#> 10 old Iceland 3 FALSE TRUE
#> 11 old Portugal 4 FALSE TRUE
#> 12 old Spain 6 FALSE FALSE
#> 13 young Total 7 FALSE FALSE
#> 14 young EU 5 FALSE TRUE
#> 15 young nonEU 2 TRUE TRUE
#> 16 young Iceland 2 TRUE TRUE
#> 17 young Portugal 0 TRUE TRUE
#> 18 young Spain 5 FALSE FALSE
A formatted version of this output:
Table 2:
dimVar = c("age", "geo", "eu"), maxN = 2
age | Iceland | Portugal | Spain | nonEU | EU | Total |
---|---|---|---|---|---|---|
young | 2 | 0 | 5 | 2 | 5 | 7 |
old | 3 | 4 | 6 | 3 | 10 | 13 |
Total | 5 | 4 | 11 | 5 | 15 | 20 |
As described in the define-tables vignette hierarchies are here detected automatically. The same output is obtained if we first generate hierarchies by:
<- SSBtools::FindDimLists(dataset_a[c("age", "geo", "eu")])
dimlists
dimlists#> $age
#> levels codes
#> 1 @ Total
#> 2 @@ old
#> 3 @@ young
#>
#> $geo
#> levels codes
#> 1 @ Total
#> 2 @@ EU
#> 3 @@@ Portugal
#> 4 @@@ Spain
#> 5 @@ nonEU
#> 6 @@@ Iceland
And thereafter run SuppressSmallCounts with these hierarchies as input:
SuppressSmallCounts(data = dataset_a[c("age", "geo", "freq")],
hierarchies = dimlists,
freqVar = "freq",
maxN = 2)
Using the formula interface is one way to achieve fewer cells in the output:
SuppressSmallCounts(data = dataset_a,
formula = ~age:eu + geo,
freqVar = "freq",
maxN = 2)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySum: .......
#> age geo freq primary suppressed
#> 1 Total Total 20 FALSE FALSE
#> 2 Total Iceland 5 FALSE FALSE
#> 3 Total Portugal 4 FALSE FALSE
#> 4 Total Spain 11 FALSE FALSE
#> 5 old EU 10 FALSE FALSE
#> 6 old nonEU 3 FALSE TRUE
#> 7 young EU 5 FALSE FALSE
#> 8 young nonEU 2 TRUE TRUE
In the formatted version of this output, blank cells indicate that they are not included in the output.
Table 3:
formula = ~age:eu + geo, maxN = 2
age | Iceland | Portugal | Spain | nonEU | EU | Total |
---|---|---|---|---|---|---|
young | 2 | 5 | ||||
old | 3 | 10 | ||||
Total | 5 | 4 | 11 | 20 |
By default, zeros are suppressed in order to protect against attribute disclosure in frequency tables. However, there are exceptions. Below are several options for handling exceptions.
One option is to use protectZeros = FALSE
.
SuppressSmallCounts(data = dataset_a,
dimVar = c("age", "geo", "eu"),
freqVar = "freq",
maxN = 4,
protectZeros = FALSE)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySum: ...........
#> age geo freq primary suppressed
#> 1 Total Total 20 FALSE FALSE
#> 2 Total EU 15 FALSE FALSE
#> 3 Total nonEU 5 FALSE FALSE
#> 4 Total Iceland 5 FALSE FALSE
#> 5 Total Portugal 4 TRUE TRUE
#> 6 Total Spain 11 FALSE TRUE
#> 7 old Total 13 FALSE FALSE
#> 8 old EU 10 FALSE TRUE
#> 9 old nonEU 3 TRUE TRUE
#> 10 old Iceland 3 TRUE TRUE
#> 11 old Portugal 4 TRUE TRUE
#> 12 old Spain 6 FALSE FALSE
#> 13 young Total 7 FALSE FALSE
#> 14 young EU 5 FALSE TRUE
#> 15 young nonEU 2 TRUE TRUE
#> 16 young Iceland 2 TRUE TRUE
#> 17 young Portugal 0 FALSE FALSE
#> 18 young Spain 5 FALSE TRUE
Table 4:
dimVar = c("age", "geo", "eu"), maxN = 4, protectZeros = FALSE
age | Iceland | Portugal | Spain | nonEU | EU | Total |
---|---|---|---|---|---|---|
young | 2 | 0 | 5 | 2 | 5 | 7 |
old | 3 | 4 | 6 | 3 | 10 | 13 |
Total | 5 | 4 | 11 | 5 | 15 | 20 |
Another possibility that gives the same output is:
<- SuppressSmallCounts(data = dataset_a[-3, ],
output dimVar = c("age", "geo", "eu"),
freqVar = "freq",
maxN = 4,
extend0 = FALSE,
structuralEmpty = TRUE)
#> GaussSuppression_anySum: ..........
Here the zero-frequency row is omitted in the input. By default, the
table is automatically extended so that the Gauss algorithm handles
zeros correctly. When this is turned off (extend0 = FALSE
),
a warning with the following text will appear: “Suppressed cells
with empty input will not be protected. Extend input data with
zeros?”. However, with structuralEmpty = TRUE
, the
“empty zeros” are assumed to represent structural zeros that must not be
suppressed. As exemplified a little further below, one can thus handle
data with both structural and non-structural zeros.
We can combine protectZeros = FALSE
with
secondaryZeros = TRUE
.
SuppressSmallCounts(data = dataset_a,
dimVar = c("age", "geo", "eu"),
freqVar = "freq",
maxN = 3,
protectZeros = FALSE,
secondaryZeros = TRUE)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySumNOTprimary: .............
#> age geo freq primary suppressed
#> 1 Total Total 20 FALSE FALSE
#> 2 Total EU 15 FALSE FALSE
#> 3 Total nonEU 5 FALSE FALSE
#> 4 Total Iceland 5 FALSE FALSE
#> 5 Total Portugal 4 FALSE FALSE
#> 6 Total Spain 11 FALSE FALSE
#> 7 old Total 13 FALSE FALSE
#> 8 old EU 10 FALSE TRUE
#> 9 old nonEU 3 TRUE TRUE
#> 10 old Iceland 3 TRUE TRUE
#> 11 old Portugal 4 FALSE TRUE
#> 12 old Spain 6 FALSE FALSE
#> 13 young Total 7 FALSE FALSE
#> 14 young EU 5 FALSE TRUE
#> 15 young nonEU 2 TRUE TRUE
#> 16 young Iceland 2 TRUE TRUE
#> 17 young Portugal 0 FALSE TRUE
#> 18 young Spain 5 FALSE FALSE
Table 5:
dimVar = c("age", "geo", "eu"), maxN = 3,
protectZeros = FALSE, secondaryZeros = TRUE
age | Iceland | Portugal | Spain | nonEU | EU | Total |
---|---|---|---|---|---|---|
young | 2 | 0 | 5 | 2 | 5 | 7 |
old | 3 | 4 | 6 | 3 | 10 | 13 |
Total | 5 | 4 | 11 | 5 | 15 | 20 |
The example below uses dataset_b
, which has two
zeros.
dataset_b#> age geo eu freq
#> 7 young Spain EU 5
#> 8 young Iceland nonEU 0
#> 9 young Portugal EU 0
#> 10 old Spain EU 6
#> 11 old Iceland nonEU 3
#> 12 old Portugal EU 4
Let’s assume that the first zero is considered as a structural zero. In order to account for this characteristic, we will exclude this particular zero and retain the other. As a general rule, we will exclude all structural zeros.
SuppressSmallCounts(data = dataset_b[-2, ],
dimVar = c("age", "geo", "eu"),
freqVar = "freq",
maxN = 2,
extend0 = FALSE,
structuralEmpty = TRUE)
#> GaussSuppression_anySum: .............
#> age geo freq primary suppressed
#> 1 Total Total 18 FALSE FALSE
#> 2 Total EU 15 FALSE FALSE
#> 3 Total nonEU 3 FALSE FALSE
#> 4 Total Iceland 3 FALSE FALSE
#> 5 Total Portugal 4 FALSE FALSE
#> 6 Total Spain 11 FALSE FALSE
#> 7 old Total 13 FALSE FALSE
#> 8 old EU 10 FALSE FALSE
#> 9 old nonEU 3 FALSE FALSE
#> 10 old Iceland 3 FALSE FALSE
#> 11 old Portugal 4 FALSE TRUE
#> 12 old Spain 6 FALSE TRUE
#> 13 young Total 5 FALSE FALSE
#> 14 young EU 5 FALSE FALSE
#> 15 young nonEU 0 FALSE FALSE
#> 16 young Iceland 0 FALSE FALSE
#> 17 young Portugal 0 TRUE TRUE
#> 18 young Spain 5 FALSE TRUE
Table 6:
dimVar = c("age", "geo", "eu"), maxN = 2,
extend0 = FALSE, structuralEmpty = TRUE
age | Iceland | Portugal | Spain | nonEU | EU | Total |
---|---|---|---|---|---|---|
young | 0 | 0 | 5 | 0 | 5 | 5 |
old | 3 | 4 | 6 | 3 | 10 | 13 |
Total | 3 | 4 | 11 | 3 | 15 | 18 |
Now, the data has been processed correctly, the structural zeros will be published while the other zeros are suppressed.
To get the same output with the formula interface, we can use the following code:
SuppressSmallCounts(data = dataset_b[-2, ],
formula = ~age * (geo + eu),
freqVar = "freq",
maxN = 2,
extend0 = FALSE,
structuralEmpty = TRUE,
removeEmpty = FALSE)
Please note that in order to include empty cells in the output, you
need to set the removeEmpty
parameter to
FALSE
. By default, this parameter is set to
TRUE
when using the formula interface.
When using the standard suppression technique on table
dataset_b
, many cells are suppressed.
SuppressSmallCounts(data = dataset_b,
dimVar = c("age", "geo", "eu"),
freqVar = "freq",
maxN = 2)
#> [extend0 6*4->6*4]
#> GaussSuppression_anySum: .............
#> age geo freq primary suppressed
#> 1 Total Total 18 FALSE FALSE
#> 2 Total EU 15 FALSE FALSE
#> 3 Total nonEU 3 FALSE FALSE
#> 4 Total Iceland 3 FALSE FALSE
#> 5 Total Portugal 4 FALSE FALSE
#> 6 Total Spain 11 FALSE FALSE
#> 7 old Total 13 FALSE FALSE
#> 8 old EU 10 FALSE TRUE
#> 9 old nonEU 3 FALSE TRUE
#> 10 old Iceland 3 FALSE TRUE
#> 11 old Portugal 4 FALSE TRUE
#> 12 old Spain 6 FALSE TRUE
#> 13 young Total 5 FALSE FALSE
#> 14 young EU 5 FALSE TRUE
#> 15 young nonEU 0 TRUE TRUE
#> 16 young Iceland 0 TRUE TRUE
#> 17 young Portugal 0 TRUE TRUE
#> 18 young Spain 5 FALSE TRUE
Table 7:
dimVar = c("age", "geo", "eu"), maxN = 2
age | Iceland | Portugal | Spain | nonEU | EU | Total |
---|---|---|---|---|---|---|
young | 0 | 0 | 5 | 0 | 5 | 5 |
old | 3 | 4 | 6 | 3 | 10 | 13 |
Total | 3 | 4 | 11 | 3 | 15 | 18 |
The reason for the Spain suppressions is to prevent the disclosure of zeros, which would be easily revealed if young:Spain is not suppressed. In that case the sum of young:Iceland and young:Portugal can easily be calculated to be zero. Since negative frequencies are not possible, the only possibility is two zeros.
The handling of this problem is standard, but it can be turned off by
singletonMethod = "none"
.
This problem occurs when protectZeros = FALSE
and
secondaryZeros = FALSE
(default). We now also look at a
larger example that uses dataset
which has 18 rows.
<- SuppressSmallCounts(data = dataset,
output formula = ~age*geo*year + eu*year,
freqVar = "freq",
maxN = 1,
protectZeros = FALSE)
#> [extend0 18*5->18*5]
#> GaussSuppression_anySum: .................................................
head(output)
#> age geo year freq primary suppressed
#> 1 Total Total Total 59 FALSE FALSE
#> 2 old Total Total 38 FALSE FALSE
#> 3 young Total Total 21 FALSE FALSE
#> 4 Total Iceland Total 13 FALSE FALSE
#> 5 Total Portugal Total 12 FALSE FALSE
#> 6 Total Spain Total 34 FALSE FALSE
Table 8:
formula = ~age*geo*year + eu*year, maxN = 1, protectZeros = FALSE
age | year | Iceland | Portugal | Spain | nonEU | EU | Total |
---|---|---|---|---|---|---|---|
young | 2014 | 2 | 0 | 5 | 7 | ||
young | 2015 | 0 | 0 | 5 | 5 | ||
young | 2016 | 1 | 1 | 7 | 9 | ||
young | Total | 3 | 1 | 17 | 21 | ||
old | 2014 | 3 | 4 | 6 | 13 | ||
old | 2015 | 3 | 4 | 6 | 13 | ||
old | 2016 | 4 | 3 | 5 | 12 | ||
old | Total | 10 | 11 | 17 | 38 | ||
Total | 2014 | 5 | 4 | 11 | 5 | 15 | 20 |
Total | 2015 | 3 | 4 | 11 | 3 | 15 | 18 |
Total | 2016 | 5 | 4 | 12 | 5 | 16 | 21 |
Total | Total | 13 | 12 | 34 | 13 | 46 | 59 |
In this output, young:2016:Spain is suppressed due to the standard handling of the singleton problem.
However, by using singletonMethod = "none"
in this case,
young:2016:Spain will not be suppressed. Then the sum of
young:2016:Iceland and young:2016:Portugal can easily
be calculated to be two. Since zeros are never suppressed, the only
possible values for these two cells are two ones.