Title: Unified Preprocessing Toolkit for Proteomics and Metabolomics
Version: 0.1.1
Maintainer: Isaac Osei <ikemillar65@gmail.com>
Description: Provides unified workflows for quality control, normalization, and visualization of proteomic and metabolomic data. The package simplifies preprocessing through automated imputation, scaling, and principal component analysis (PCA)-based exploratory analysis, enabling researchers to prepare omics datasets efficiently for downstream statistical and machine learning analyses.
License: GPL-3
Encoding: UTF-8
Imports: ggplot2, stats, utils
Suggests: testthat (≥ 3.0.0)
Config/testthat/edition: 3
RoxygenNote: 7.3.3
URL: https://github.com/ikemillar/OmicsPrepR
BugReports: https://github.com/ikemillar/OmicsPrepR/issues
NeedsCompilation: no
Packaged: 2025-11-06 19:13:18 UTC; isaacosei
Author: Isaac Osei [aut, cre], Dennis Opoku Boadu [aut], Chettupally Anil Carie [aut]
Repository: CRAN
Date/Publication: 2025-11-11 21:30:08 UTC

Export Cleaned Omics Data

Description

Saves a cleaned omics dataset to a CSV file.

Usage

export_clean(data, file_path)

Arguments

data

A cleaned omics data frame or matrix.

file_path

Path to the file where the data will be saved.

Value

None. A file is written to disk.

Examples


# Create sample data
data <- matrix(rnorm(100), nrow = 10)
cleaned_data <- as.data.frame(data)

# Save to a temporary location (CRAN policy compliant)
temp_file <- tempfile(fileext = ".csv")
export_clean(cleaned_data, temp_file)



Impute Missing Values in Omics Data

Description

Impute Missing Values in Omics Data

Usage

impute_missing(data, method = c("mean", "median"))

Arguments

data

Omics data frame with missing values.

method

Imputation method ("mean", "median").

Value

Data frame with imputed values.


Integrate Proteomic and Metabolomic Data

Description

Integrate Proteomic and Metabolomic Data

Usage

integrate_omics(prot, met)

Arguments

prot

Proteomics data frame.

met

Metabolomics data frame.

Value

A merged data frame with common samples.


Load Proteomics or Metabolomics Data

Description

Load Proteomics or Metabolomics Data

Usage

load_omics(file, type = c("proteomics", "metabolomics"))

Arguments

file

Path to data file (.csv or .tsv)

type

Type of omics data ("proteomics" or "metabolomics")

Value

A data frame containing the omics dataset

Examples


# Create a temporary CSV file with example omics data
tmp <- tempfile(fileext = ".csv")
write.csv(matrix(rnorm(20), nrow = 5), tmp, row.names = FALSE)

# Load the omics data
data <- load_omics(tmp, type = "proteomics")
head(data)


Normalize Omics Data

Description

Normalize Omics Data

Usage

normalize_omics(data, method = c("zscore", "log2"))

Arguments

data

A numeric data frame of omics values.

method

Normalization method ("zscore", "log2", "quantile").

Value

Normalized data frame.


Plot Omics Data (PCA, Heatmap, or Density)

Description

Visualizes omics datasets using PCA, heatmap, or density plot options.

Arguments

data

A numeric matrix or data frame containing omics measurements.

type

A character string specifying the visualization type. One of "pca", "heatmap", or "density".

Value

A plot object (for PCA and density) or a heatmap visualization.

Examples


data <- matrix(rnorm(100), nrow = 10)
plot_omics(data, type = "pca")