Test case: the non monotonic Sobol g function.
The method of Sobol requires two samples. In the reference case there are eight variables, all following the uniform distribution on [0,1].
n <- 50000
p <- 8
X1_1 <- data.frame(matrix(runif(p * n), nrow = n))
X2_1 <- data.frame(matrix(runif(p * n), nrow = n))set.seed(4669)
gensol1 <- sobol4r_design(
X1 = X1_1,
X2 = X2_1,
order = 2,
nboot = 100
)
Y1 <- sobol_g_function(gensol1$X)
x1 <- sensitivity::tell(gensol1, Y1)print(x1)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 500000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.712087428 -5.429714e-05 0.002968139 0.706431947 0.718601309
#> X2 0.169742923 4.840186e-04 0.006215062 0.155343342 0.182854798
#> X3 0.018570343 2.575971e-04 0.005945430 0.004903759 0.033717560
#> X4 -0.001114917 3.536813e-04 0.005794935 -0.013507164 0.011609953
#> X5 -0.008241319 2.344045e-04 0.005858247 -0.020163199 0.004376139
#> X6 -0.008521466 2.220729e-04 0.005845193 -0.020244006 0.004173574
#> X7 -0.008473067 2.324260e-04 0.005862930 -0.020118022 0.004131066
#> X8 -0.008081806 2.343849e-04 0.005847215 -0.019846249 0.004556673
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.7944739156 -9.286113e-04 5.159476e-03 0.7860150395 0.8069629081
#> X2 0.2409572097 -3.645698e-04 2.322183e-03 0.2360853249 0.2467320189
#> X3 0.0344221441 3.240958e-06 3.005107e-04 0.0337146293 0.0350494313
#> X4 0.0105496678 2.376881e-06 1.056682e-04 0.0103450632 0.0107664627
#> X5 0.0001059279 -1.534982e-07 1.022979e-06 0.0001039250 0.0001083522
#> X6 0.0001034030 -1.417083e-07 9.164695e-07 0.0001018130 0.0001053867
#> X7 0.0001051487 -1.661237e-07 9.156945e-07 0.0001039020 0.0001073333
#> X8 0.0001068234 -1.537729e-07 1.097802e-06 0.0001048107 0.0001092450
Sobol4R::autoplot(x1, ncol = 1)ex1_results <- sobol_example_g_deterministic()
print(ex1_results)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 500000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.711999848 2.759449e-05 0.002631360 0.707005109 0.71676704
#> X2 0.171069444 -3.243317e-04 0.006964257 0.156977789 0.18629660
#> X3 0.019197160 2.380097e-04 0.006570602 0.005519545 0.03206075
#> X4 0.004399632 6.982094e-05 0.006591532 -0.009336102 0.01681319
#> X5 -0.001721617 2.932782e-05 0.006368456 -0.014976702 0.01081698
#> X6 -0.001881114 5.734953e-05 0.006392574 -0.015225964 0.01075163
#> X7 -0.002045248 6.137792e-05 0.006369883 -0.015444700 0.01055871
#> X8 -0.001850079 3.301663e-05 0.006399314 -0.015159481 0.01093466
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.7904857363 4.208462e-04 6.178943e-03 0.7787869014 0.8025046920
#> X2 0.2444730973 2.926195e-04 2.151611e-03 0.2399293818 0.2482734385
#> X3 0.0340828543 4.398558e-05 3.338495e-04 0.0334363304 0.0347126444
#> X4 0.0103959879 -3.029215e-06 8.915942e-05 0.0102354937 0.0105765331
#> X5 0.0001065903 1.171617e-07 9.079141e-07 0.0001045168 0.0001082466
#> X6 0.0001057113 1.810632e-07 9.735431e-07 0.0001037793 0.0001075022
#> X7 0.0001059162 -3.643364e-08 9.103740e-07 0.0001040602 0.0001081730
#> X8 0.0001042162 4.693930e-08 9.855479e-07 0.0001021336 0.0001062003The deterministic model is sobol4r_g2. The noisy version
with Gaussian noise N(0,1) is sobol4r_g2_noise_const. The
quantity of interest based on the mean over replications is
sobol4r_g2_noise_const_qoi_mean.
Y2 <- sobol_g2_function(gensol2$X)
Y3 <- sobol_g2_additive_noise(gensol2$X)
Y4 <- sobol_g2_qoi_mean(gensol2$X, nrep = 1000)x2 <- sensitivity::tell(gensol2, Y2)
x3 <- sensitivity::tell(gensol2, Y3)
x4 <- sensitivity::tell(gensol2, Y4)print(x2)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 200000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.7550055 -0.0003601385 0.002304160 0.7508551 0.7603568
#> C2 0.1957185 0.0009514298 0.006130637 0.1831536 0.2073782
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.8082007 -5.903411e-05 0.005378379 0.7971735 0.8191992
#> C2 0.2473006 2.152324e-04 0.002031224 0.2431625 0.2511949
print(x3)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 200000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.23508702 -0.0001842012 0.007418066 0.21958004 0.2523961
#> C2 0.06621936 -0.0013241741 0.007594708 0.05317969 0.0838208
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.9411610 0.0002531938 0.006125012 0.9286084 0.9535319
#> C2 0.7669998 0.0006316271 0.005430292 0.7556049 0.7762656
print(x4)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 200000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.7528842 7.419856e-05 0.002317659 0.7480429 0.7582336
#> C2 0.1953384 -5.886786e-04 0.005999309 0.1799074 0.2073489
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.8083692 0.0002805824 0.005469590 0.7956294 0.8214853
#> C2 0.2488353 0.0004188735 0.002059966 0.2442646 0.2523893ex2_results <- sobol_example_random_output()
ex2_results
#> $x_det
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 200000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.7476828 -0.0002030558 0.002421130 0.7425641 0.7530614
#> C2 0.1871172 0.0004843956 0.006332673 0.1753927 0.2002247
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.8108889 0.0003896403 0.005967927 0.7995632 0.8242206
#> C2 0.2544053 0.0003504783 0.002262034 0.2499496 0.2592531
#>
#> $x_noise
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 200000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.2215011 0.0004052269 0.007547330 0.20379786 0.23332141
#> C2 0.0552804 0.0001546113 0.008707552 0.03674069 0.07087922
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.9388735 -0.0004260980 0.006691627 0.9279979 0.9547712
#> C2 0.7776180 0.0004881797 0.005616671 0.7657743 0.7886748
#>
#> $x_qoi
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 200000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.7462698 0.000473898 0.002362959 0.7409956 0.7505454
#> C2 0.1867345 0.000292597 0.006211143 0.1733065 0.1993952
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.8111091 -7.072511e-05 0.005908455 0.7984985 0.8225162
#> C2 0.2561477 -1.309734e-04 0.002042969 0.2518767 0.2602755We keep the previously generated values for C1 and C2 and add a third
variable C3 distributed as runif(n, min = 1, max = 100).
The third variable controls the mean of the Gaussian noise.
n <- 50000
X1_r2 <- data.frame(
C1 = X1_r1$C1,
C2 = X1_r1$C2,
C3 = runif(n, min = 1, max = 100)
)
X2_r2 <- data.frame(
C1 = X2_r1$C1,
C2 = X2_r1$C2,
C3 = runif(n, min = 1, max = 100)
)head(X1_r1)
#> C1 C2
#> 1 0.01651413 0.8730539
#> 2 0.41411830 0.9350212
#> 3 0.56474556 0.2305029
#> 4 0.19459702 0.5419644
#> 5 0.14134094 0.7620684
#> 6 0.80140480 0.7306451
head(X1_r2)
#> C1 C2 C3
#> 1 0.01651413 0.8730539 91.158310
#> 2 0.41411830 0.9350212 94.475260
#> 3 0.56474556 0.2305029 18.569825
#> 4 0.19459702 0.5419644 27.675334
#> 5 0.14134094 0.7620684 95.994602
#> 6 0.80140480 0.7306451 6.472291Y5 <- sobol_g2_with_covariate_noise(gensol3$X)
Y6 <- sobol_g2_qoi_covariate_mean(gensol3$X, nrep = 1000)print(x5)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 250000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.003170282 -2.568401e-04 5.241648e-03 -0.005805240 0.01467744
#> C2 0.002782150 -2.784101e-04 5.243496e-03 -0.006477354 0.01411919
#> C3 0.998223548 -1.830410e-06 1.085285e-05 0.998202502 0.99824627
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.001669680 -1.587459e-06 1.168892e-05 0.001646658 0.001691769
#> C2 0.001360707 1.195725e-06 1.036085e-05 0.001337813 0.001380887
#> C3 0.996461054 2.828648e-04 5.348968e-03 0.985081228 1.006159984
print(x6)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 250000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.003045781 3.245345e-04 5.730385e-03 -0.007370979 0.01748265
#> C2 0.002771731 3.117730e-04 5.719281e-03 -0.007607804 0.01720491
#> C3 0.999453577 -3.715748e-07 3.504398e-06 0.999448090 0.99946123
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.0004432984 3.658371e-07 3.301551e-06 0.0004352668 0.0004492114
#> C2 0.0001368388 1.677036e-08 1.215260e-06 0.0001343554 0.0001391440
#> C3 0.9968336377 -3.216996e-04 5.739468e-03 0.9822539001 1.0073591940ex3_results <- sobol_example_covariate_large()
ex3_results
#> $x_single
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 250000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 -0.001419232 -2.551862e-04 4.754941e-03 -0.01020911 0.008679871
#> C2 -0.002118300 -2.741205e-04 4.734446e-03 -0.01049569 0.007917209
#> C3 0.998230810 -2.740679e-07 1.330441e-05 0.99820296 0.998260770
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.001673231 -2.799984e-07 1.317787e-05 0.001648141 0.001702239
#> C2 0.001364189 4.779018e-07 1.142277e-05 0.001341736 0.001387983
#> C3 1.002209585 2.630762e-04 4.745343e-03 0.992739198 1.010733375
#>
#> $x_qoi
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 250000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 -0.002076225 -3.254285e-04 5.216497e-03 -0.01315381 0.007326871
#> C2 -0.002037827 -3.384410e-04 5.245055e-03 -0.01333648 0.007316861
#> C3 0.999453572 -3.508471e-07 4.455655e-06 0.99944591 0.999464397
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.0004459458 2.230505e-07 3.877984e-06 0.0004374859 0.0004532539
#> C2 0.0001360653 9.659129e-08 1.327046e-06 0.0001329216 0.0001383504
#> C3 1.0017834713 3.256617e-04 5.228995e-03 0.9925340972 1.0128396236We now take a third input C3 distributed as
runif(n, min = 1, max = 1.5), which induces a much smaller
range for the mean of the noise.
n <- 50000
X1_r3 <- data.frame(
C1 = X1_r1$C1,
C2 = X1_r1$C2,
C3 = runif(n, min = 1, max = 1.5)
)
X2_r3 <- data.frame(
C1 = X2_r1$C1,
C2 = X2_r1$C2,
C3 = runif(n, min = 1, max = 1.5)
)Y7 <- sobol_g2_with_covariate_noise(gensol4$X)
Y8 <- sobol_g2_qoi_covariate_mean(gensol4$X, nrep = 1000)print(x7)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 250000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.2343104 0.0001485184 0.006655899 0.2214713611 0.24778800
#> C2 0.0671114 0.0001936093 0.007963485 0.0529143153 0.08413863
#> C3 0.0151080 -0.0008516146 0.007887232 -0.0004634551 0.03009347
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.9256960 -0.001052027 0.005457107 0.9121703 0.9383142
#> C2 0.7543966 0.000522484 0.004967361 0.7457813 0.7660890
#> C3 0.6918052 -0.000698318 0.004661657 0.6829604 0.7017516
print(x8)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 250000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.72142972 -2.372762e-05 0.002765113 0.7156678 0.72718974
#> C2 0.18537517 -5.267583e-04 0.005880219 0.1756444 0.19815953
#> C3 0.04948267 -3.025578e-04 0.005817743 0.0384426 0.06158135
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.77113008 3.568969e-04 0.0054754198 0.75845776 0.78082092
#> C2 0.23803502 -5.427039e-05 0.0023475876 0.23364114 0.24346811
#> C3 0.04695996 1.980127e-05 0.0003957626 0.04594085 0.04767237ex4_results <- sobol_example_covariate_small()
ex4_results
#> $x_single
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 250000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.23474659 -0.0008225662 0.007326213 0.220721125 0.25029623
#> C2 0.05807751 -0.0010396869 0.008480065 0.037921771 0.07825352
#> C3 0.01719863 -0.0010599722 0.008105637 0.001775034 0.03557313
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.9294956 0.0006925395 0.006670215 0.9154525 0.9399075
#> C2 0.7578196 0.0009538626 0.005386697 0.7429564 0.7664032
#> C3 0.6933014 0.0003287579 0.005084144 0.6827887 0.7025969
#>
#> $x_qoi
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 250000
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.71400016 4.210423e-05 0.002448127 0.7091120 0.71892020
#> C2 0.18089491 3.468145e-05 0.006854263 0.1669723 0.19479433
#> C3 0.04236738 -1.762632e-04 0.006329338 0.0287953 0.05481073
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> C1 0.78153485 3.400941e-05 0.0058307860 0.76887925 0.79381579
#> C2 0.23845898 6.110704e-05 0.0021492326 0.23337772 0.24242239
#> C3 0.04681305 -1.058187e-05 0.0003578763 0.04611261 0.04737251We now turn to the process model. The uncertain inputs are the distributional parameters of the individual unit model. The quantity of interest is the time needed to reach a given number of successes.
n <- 100
draw_params <- function(n) {
data.frame(t(replicate(
n,
c(
1 / runif(1, min = 20, max = 100),
1 / runif(1, min = 24, max = 2000),
1 / runif(1, min = 24, max = 120),
runif(1, min = 0.05, max = 0.3),
runif(1, min = 0.3, max = 0.7)
)
)))
}
X1_process <- draw_params(n)
X2_process <- draw_params(n)set.seed(4669)
gensolp1 <- sobol4r_design(
X1 = X1_process,
X2 = X2_process,
order = 2,
nboot = 10
)MM <- 50
Yp1 <- process_fun_row_wise(gensolp1$X, M = MM)
Yp2 <- process_fun_mean_to_M(gensolp1$X, M = MM, nrep = 10)print(xp1)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 700
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.278917014 -0.07847893 0.2065262 0.07005799 0.6670722
#> X2 -0.009680856 -0.04000430 0.1799449 -0.22670841 0.4053189
#> X3 0.134364681 -0.04240028 0.1939272 -0.10351185 0.5689621
#> X4 0.116140455 -0.04292560 0.2017516 -0.14794723 0.5629771
#> X5 0.336779215 -0.03638448 0.1522807 0.18050722 0.7272754
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.66170348 0.006773165 0.15511050 0.423221019 0.8489875
#> X2 0.09615523 0.009498338 0.02629171 0.056679657 0.1232045
#> X3 0.03578188 0.003511799 0.01392988 0.009682675 0.0506120
#> X4 0.63251105 0.099239178 0.14120462 0.259268101 0.7497794
#> X5 0.14750480 -0.002367062 0.02904764 0.100426378 0.1891590
print(xp2)
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 700
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.4071748 -0.063636493 0.1631568 0.27550746 0.8152276
#> X2 0.2090858 0.009138605 0.1129780 0.05742674 0.4362972
#> X3 0.2282092 0.007633700 0.1094396 0.09441220 0.4604817
#> X4 0.2116146 0.027940394 0.2012275 -0.12810334 0.4372343
#> X5 0.4040308 -0.013610653 0.1412412 0.20253207 0.6856409
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.507347527 -7.498224e-03 0.1098713561 0.256369663 0.669338287
#> X2 0.003894622 2.390915e-04 0.0007537223 0.002698195 0.005038152
#> X3 0.003770138 -5.071994e-05 0.0012352511 0.001016542 0.005163826
#> X4 0.556305209 -1.429157e-02 0.0969573233 0.315859067 0.676893883
#> X5 0.116963250 -2.114866e-03 0.0279731509 0.092409682 0.167265219ex5_results <- sobol_example_process(order = 2)
ex5_results
#> $xp_single
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 700
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.3251878 -0.11956089 0.3003891 0.05142644 0.8768130
#> X2 0.2709196 -0.06616596 0.2367619 0.09601432 0.8667671
#> X3 0.2529777 -0.09381375 0.2528680 0.05249973 0.8711076
#> X4 0.6503453 -0.07717083 0.1991161 0.50133138 1.1809233
#> X5 0.4728082 -0.09376040 0.3386293 0.17668752 1.4241019
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.40911579 0.094246717 0.24311335 -0.085629474 0.60818764
#> X2 0.03122528 0.006236267 0.02097528 -0.015760932 0.05126478
#> X3 0.01955240 0.004392401 0.01269195 -0.009580275 0.02594799
#> X4 0.48288571 0.042363613 0.11435748 0.166869403 0.57045155
#> X5 0.21775282 0.031662770 0.08754701 -0.027346891 0.26068068
#>
#> $xp_qoi
#>
#> Call:
#> sensitivity::soboljansen(model = NULL, X1 = X1, X2 = X2, nboot = nboot)
#>
#> Model runs: 700
#>
#> First order indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.3483802 -0.16043994 0.3215662 0.05893805 1.0534591
#> X2 0.1871901 -0.07703889 0.2160598 0.01647143 0.7183039
#> X3 0.1394390 -0.06937329 0.2202040 -0.03495543 0.6741310
#> X4 0.6651748 -0.08008972 0.1684943 0.49885673 1.0749781
#> X5 0.4470737 -0.13859876 0.2533281 0.23713323 0.9783885
#>
#> Total indices:
#> original bias std. error min. c.i. max. c.i.
#> X1 0.299244088 0.0591835611 0.159565072 -0.1305486243 0.485596396
#> X2 0.004117920 0.0010084811 0.001572003 0.0005187457 0.005306349
#> X3 0.004106141 0.0009891752 0.002028857 -0.0016666262 0.005185107
#> X4 0.440489215 0.0654289413 0.120584267 0.1996023024 0.501476240
#> X5 0.194195448 0.0003466733 0.032737243 0.1403634094 0.243823212