booklet: Multivariate Exploratory Data Analysis

Exploratory data analysis methods to summarize, visualize and describe datasets. The main principal component methods are available, those with the largest potential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) when variables are categorical, Multiple Factor Analysis (MFA) when variables are structured in groups.

Version: 1.0.0
Depends: R (≥ 4.1.0)
Suggests: covr, devtools, factoextra, FactoMineR, knitr, renv, testthat
Published: 2025-04-24
Author: Alex Yahiaoui Martinez ORCID iD [aut, cre]
Maintainer: Alex Yahiaoui Martinez <yahiaoui-martinez.alex at outlook.com>
BugReports: https://github.com/alexym1/booklet/issues
License: MIT + file LICENSE
URL: https://github.com/alexym1/booklet, https://alexym1.github.io/booklet/
NeedsCompilation: no
Materials: README
CRAN checks: booklet results

Documentation:

Reference manual: booklet.pdf
Vignettes: Comparison with FactoMineR (source, R code)
Introduction to booklet (source, R code)
Data visualization with factoextra (source, R code)

Downloads:

Package source: booklet_1.0.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): booklet_1.0.0.tgz, r-oldrel (arm64): booklet_1.0.0.tgz, r-release (x86_64): booklet_1.0.0.tgz, r-oldrel (x86_64): booklet_1.0.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=booklet to link to this page.