Welcome to datasetjson. datasetjson is an R package built to read and write CDISC Dataset JSON formatted datasets.
As always, we welcome your feedback. If you spot a bug, would like to see a new feature, or if any documentation is unclear - submit an issue through GitHub right here.
You can install datasetjson with:
# Install from CRAN:
install.packages("datasetjson")
# Or install the development version:
devtools::install_github("https://github.com/atorus-research/datasetjson.git", ref="dev")
datasetjson works by allowing you to take a data frame and apply the necessary attributes required for the CDISC Dataset JSON. The goal is to make this experience simple. Before you can write a Dataset JSON file to disk, you first need to build the Dataset JSON object. An example call looks like this:
To attach necessary metadata (that can’t be inferred by the input dataframe) to the datasetjson
object, you can use a variety of setter functions:
ds_updated <- ds_json |>
set_data_type("referenceData") |>
set_file_oid("/some/path") |>
set_metadata_ref("some/define.xml") |>
set_metadata_version("MDV.MSGv2.0.SDTMIG.3.3.SDTM.1.7") |>
set_originator("Some Org") |>
set_source_system("source system", "1.0") |>
set_study_oid("SOMESTUDY")
If these settings are not provided, dataset_json()
will default the fields to “NA” so a compliant file can still be generated.
Once the datasetjson
object is prepared with the necessary metadata, you can use write_dataset_json()
to write the file to disk.
Or if you don’t provide a file path, the JSON text will return directly.
## {
## "creationDateTime": "2023-11-17T13:23:08",
## "datasetJSONVersion": "1.0.0",
## "fileOID": "/some/path",
## "originator": "Some Org",
## "sourceSystem": "source system",
## "sourceSystemVersion": "1.0",
## "referenceData": {
## "studyOID": "SOMESTUDY",
## "metaDataVersionOID": "MDV.MSGv2.0.SDTMIG.3.3.SDTM.1.7",
## "metaDataRef": "some/define.xml",
## "itemGroupData": {
## "IG.IRIS": {
## "records": 5,
## "name": "IRIS",
## "label": "Iris",
## "items": [
## {
## "OID": "ITEMGROUPDATASEQ",
## "name": "ITEMGROUPDATASEQ",
## "label": "Record Identifier",
## "type": "integer"
## },
## {
## "OID": "IT.IR.Sepal.Length",
## "name": "Sepal.Length",
## "label": "Sepal Length",
## "type": "float",
## "keySequence": 2
## },
## {
## "OID": "IT.IR.Sepal.Width",
## "name": "Sepal.Width",
## "label": "Sepal Width",
## "type": "float"
## },
## {
## "OID": "IT.IR.Petal.Length",
## "name": "Petal.Length",
## "label": "Petal Length",
## "type": "float",
## "keySequence": 3
## },
## {
## "OID": "IT.IR.Petal.Width",
## "name": "Petal.Width",
## "label": "Petal Width",
## "type": "float"
## },
## {
## "OID": "IT.IR.Species",
## "name": "Species",
## "label": "Flower Species",
## "type": "string",
## "length": 10,
## "keySequence": 1
## }
## ],
## "itemData": [
## [1, 5.1, 3.5, 1.4, 0.2, "setosa"],
## [2, 4.9, 3, 1.4, 0.2, "setosa"],
## [3, 4.7, 3.2, 1.3, 0.2, "setosa"],
## [4, 4.6, 3.1, 1.5, 0.2, "setosa"],
## [5, 5, 3.6, 1.4, 0.2, "setosa"]
## ]
## }
## }
## }
## }
To read a Dataset JSON file, you can use read_dataset_json()
. You can either provide the path to a JSON file, or if you already have the JSON text loaded into a character string, you can provide that directly.
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
## 4 4.6 3.1 1.5 0.2 setosa
## 5 5.0 3.6 1.4 0.2 setosa
The data frame that’s returned is enriched with attributes available in the Dataset JSON format. For example, opening the dataframe within the RStudio IDE will present the variable labels. The other variable is attached as attributes on individual columns, and file level metadata is attached as attributes on the data frame itself:
## [1] "2023-11-17T13:23:08"
## [1] "IT.IR.Sepal.Length"
## [1] "float"
Note that Dataset JSON is an early CDISC standard and is still subject to change, as as such this package will be updated. Backwards compatibility will be enforced once the standard itself is more stable. Until then, it is not recommended to use this package within production activities.
Thank you to Ben Straub and Eric Simms (GSK) for help and input during the original CDISC Dataset JSON hackathon that motivated this work.