This vignette is meant to provide useRs with an visual, explorable introduction to the capabilities of the igoR package.
The analysis would be based on those provided on (J. C. Pevehouse et al. 2020). For more information on the IGO data sets and additional downloads, see Intergovernmental Organizations (v3).
Note that the dyadic dataset is not provided in the package, due
its size (~500 MB on Stata .dta
format). However,
igo_dyadic()
function provides similar
results.
From J. Pevehouse, McManus, and Nordstrom (2019):
What is an IGO?
The definition of an Intergovernmental Organization (IGO) on the original dataset is based on the following criteria:
- An IGO must consist of at least three members of the COW-defined state system.
- An IGO must hold regular plenary sessions at least once every ten years
- An IGO must possess a permanent secretariat and corresponding headquarters.
When does an IGO actually begin?
The data sets begins to code an IGO by identifying the first year in which the organization functions. In some cases, individual members are listed by year of accession or signature.
When does an IGO die?
Version 3.0 of the IGO data set uses the following criteria:
- An organization is considered terminated when the following words were used to describe the context of the organization:
- Replaced;
- Succeeded;
- Superseded;
- Integrated;
- Merged;
- Dies.
This section provides some quick analysis based on the figures of J. C. Pevehouse et al. (2020).
In first place, we create a custom ggplot2::theme()
named theme_igor
, that we would apply to all our
figures:
theme_igor <- theme(
axis.title = element_blank(),
axis.line.x.bottom = element_line("black"),
axis.line.y.left = element_line("black"),
axis.text = element_text(color = "black", family = "sans"),
axis.text.y.left = element_text(angle = 90, hjust = 0.5),
legend.position = "bottom",
legend.title = element_blank(),
legend.key = element_blank(),
legend.key.width = unit(2, "cm"),
legend.text = element_text(family = "sans", size = 11.5),
legend.box.background = element_rect(color = "black", linewidth = 1),
legend.spacing = unit(1.2 / 100, "npc"),
plot.background = element_rect("grey90"),
plot.margin = unit(rep(0.5, 4), "cm"),
panel.background = element_rect("white"),
panel.grid = element_blank(),
panel.border = element_rect(fill = NA, colour = "grey90"),
panel.grid.major.y = element_line("grey90")
)
The following code extracts the number of IGOs and states included on this package. The years available are 1816 to 2014.
# Summarize
igos_by_year <- igo_year_format3 %>%
group_by(year) %>%
summarise(value = n(), .groups = "keep") %>%
mutate(variable = "Total IGOs")
countries_by_year <- state_year_format3 %>%
group_by(year) %>%
summarise(value = n(), .groups = "keep") %>%
mutate(variable = "Number of COW states")
all_by_year <- igos_by_year %>%
bind_rows(countries_by_year) %>%
# For labelling the plot
mutate(variable = factor(variable,
levels = c("Total IGOs", "Number of COW states")
))
# Plot
ggplot(all_by_year, aes(x = year, y = value)) +
geom_line(color = "black", aes(linetype = variable)) +
scale_x_continuous(limits = c(1800, 2014)) +
scale_linetype_manual(values = c("solid", "dashed")) +
geom_vline(xintercept = c(1945, 1989)) +
ylim(0, 400) +
theme_igor
This plot shows how many IGOs were “born” and “died” on each year
# Births and deads by year
df <- igo_search()
births <- df %>%
mutate(year = sdate) %>%
group_by(year) %>%
summarise(value = n(), .groups = "keep") %>%
mutate(variable = "IGO Births")
deads <- df %>%
mutate(year = deaddate) %>%
group_by(year) %>%
summarise(value = n(), .groups = "keep") %>%
mutate(variable = "IGO Deaths")
births_and_deads <- births %>%
bind_rows(deads) %>%
filter(!is.na(year))
# Plot
ggplot(births_and_deads, aes(x = year, y = value)) +
geom_line(color = "black", aes(linetype = variable)) +
scale_linetype_manual(values = c("solid", "dashed")) +
scale_x_continuous(
limits = c(1815, 2015),
breaks = seq(1815, 2015, by = 25)
) +
ylim(0, 15) +
theme_igor
A plot with the number of IGOs by region. The definition of region is based on the original definition by J. C. Pevehouse et al. (2020), as provided in the complementary replication data set (PRIO 2020):
# crossreg and universal codes not included
asia <- c(
550, 560, 570, 580, 590, 600, 610, 640, 650, 660,
670, 725, 750, 825, 1030, 1345, 1400, 1530, 1532, 2300,
2770, 3185, 3330, 3560, 3930, 4115, 4150, 4160, 4170,
4190, 4200, 4220, 4265, 4440
)
middle_east <- c(
370, 380, 390, 400, 410, 420, 430, 440, 450, 460,
470, 490, 500, 510, 520, 1110, 1410, 1990, 2000,
2220, 3450, 3800, 4140, 4270, 4380
)
europe <- c(
20, 300, 780, 800, 832, 840, 860, 1020, 1050, 1070, 1080,
1125, 1140, 1390, 1420, 1440, 1563, 1565, 1580, 1585, 1590,
1600, 1610, 1620, 1630, 1640, 1645, 1653, 1660, 1670, 1675,
1680, 1690, 1700, 1710, 1715, 1720, 1730, 1740, 1750, 1760,
1770, 1780, 1790, 1800, 1810, 1820, 1830, 1930, 1970, 1980,
2310, 2325, 2345, 2440, 2450, 2550, 2575, 2610, 2650, 2705,
2890, 2972, 3010, 3095, 3230, 3290, 3360, 3485, 3505, 3585,
3590, 3600, 3610, 3620, 3630, 3640, 3650, 3655, 3660, 3665,
3762, 3810, 3855, 3860, 3910, 4000, 4350, 4450, 4460, 4510,
4520, 4540
)
africa <- c(
30, 40, 50, 60, 80, 90, 100, 110, 115, 120, 125, 130, 140,
150, 155, 160, 170, 180, 190, 200, 210, 225, 240, 250, 260, 280,
290, 690, 700, 710, 940, 1060, 1150, 1170, 1260, 1290, 1310,
1320, 1330, 1340, 1355, 1430, 1450, 1460, 1470, 1475, 1480,
1500, 1510, 1520, 1870, 2080, 2090, 2230, 2330, 2795, 3300,
3310, 3470, 3480, 3510, 3520, 3570, 3740, 3760, 3761, 3790,
3820, 3875, 3905, 3970, 4010, 4030, 4050, 4055, 4080, 4110,
4120, 4130, 4230, 4240, 4250, 4251, 4340, 4365, 4480, 4485,
4490, 4500, 4501, 4503
)
americas <- c(
310, 320, 330, 340, 720, 760, 815, 875, 880, 890, 900,
910, 912, 913, 920, 950, 970, 980, 990, 1000, 1010, 1095,
1130, 1486, 1489, 1490, 1860, 1890, 1920, 1950, 2070, 2110,
2120, 2130, 2140, 2150, 2160, 2170, 2175, 2180, 2190, 2200,
2203, 2206, 2210, 2260, 2340, 2490, 2560, 2980, 3060,
3340, 3370, 3380, 3390, 3400, 3410, 3420, 3428, 3430, 3670,
3680, 3812, 3830, 3880, 3890, 3900, 3925, 3980, 4070, 4100,
4260, 4280, 4370
)
regions <- igo_search() %>%
mutate(region = case_when(
ionum %in% africa ~ "Africa",
ionum %in% americas ~ "Americas",
ionum %in% asia ~ "Asia",
ionum %in% europe ~ "Europe",
ionum %in% middle_east ~ "Middle East",
TRUE ~ NA
)) %>%
select(ioname, region)
After we have created a data frame with the regions, we can classify the IGOs by region.
# regions dataset created on previous chunk
# All IGOs
alligos <- igo_year_format3 %>%
select(ioname, year)
regionsum <- alligos %>%
left_join(regions) %>%
group_by(year, region) %>%
summarise(value = n(), .groups = "keep") %>%
filter(!is.na(region)) %>%
# For plotting
mutate(region = factor(region,
levels = c(
"Asia", "Europe", "Africa", "Americas",
"Middle East"
)
))
# Plot
ggplot(regionsum, aes(x = year, y = value)) +
geom_line(color = "black", aes(linetype = region)) +
scale_linetype_manual(
values = c("solid", "dashed", "dotted", "dotdash", "longdash")
) +
guides(linetype = guide_legend(ncol = 2, byrow = TRUE)) +
ylim(0, 80) +
scale_x_continuous(
limits = c(1815, 2015),
breaks = seq(1815, 2015, by = 25)
) +
theme_igor
Number of memberships of a country. We select here five countries on Asia: India, China, Pakistan, Indonesia and Bangladesh.
asia5_cntries <- c("China", "India", "Pakistan", "Indonesia", "Bangladesh")
# Five countries of Asia
asia5_igos <- igo_state_membership(
state = asia5_cntries, year = 1865:2014,
status = "Full Membership"
)
asia5 <- asia5_igos %>%
group_by(statenme, year) %>%
summarise(values = n(), .groups = "keep") %>%
mutate(statenme = factor(statenme, levels = asia5_cntries))
# Plot
ggplot(asia5, aes(x = year, y = values)) +
geom_line(color = "black", aes(linetype = statenme)) +
scale_linetype_manual(
values = c("solid", "dashed", "dotted", "dotdash", "longdash")
) +
guides(linetype = guide_legend(ncol = 3, byrow = TRUE)) +
theme(axis.title.y.left = element_text(
family = "sans", size = 12,
margin = margin(r = 6)
)) +
scale_x_continuous(
limits = c(1865, 2015),
breaks = seq(1865, 2015, by = 25)
) +
scale_y_continuous("Number of memberships",
breaks = seq(0, 100, 20),
limits = c(0, 100)
) +
theme_igor