count_NA() counts the number of missing values in a
vector, data frame or matrix.apply_imputation() and friends now have an option to
convert tibbles instead of throwing an error.delete_MAR_1_to_x() and
delete_MNAR_1_to_x() now handle unordered factors as
documented (thanks to Steve Roehrig for reporting).delete_MAR_1_to_x() and
delete_MNAR_1_to_x() now display the correct adjusted
x value, if it is too high or too low (thanks to Steve
Roehrig for reporting).apply_imputation() type rowwise now works for data
frames (thanks to @khughitt for fixing).delete_values() now only takes mech_type
and derives mechanism.delete_ functions have the argument
n_mis_stochastic now. For some functions, this is only a
renaming of the old stochastic argument (e.g.
delete_MCAR()), for others this is completely new. The new
name emphasis that this argument controls if the number of missing
values is stochastic or deterministic.delete_MAR_1_to_x() and
delete_MNAR_1_to_x() get a new argument
x_stochastic along the line of
n_mis_stochastic.missMethods.warn.too.high.p to control the displaying of
warnings for too high values of p (the probability for a
value to be missing).delete_values() and get_NA_indices()
centralize many steps of the old (not exported) delete_
functions.delete_MAR_ and delete_MNAR_ functions
and delete_MCAR() call the new delete_values()
function now.delete_ functions use the new
get_NA_indices() to determine the missing values.impute_EM() now returns the number of performed EM
iterations as attribute.delete_rank() now hands the argument
ties.method over to rank().delete_one_group() (wrong argument
FUN instead of cutoff_fun).median.factor() (thanks to
@labachevskij).impute_LS_adaptive() has now the default setting
warn_r_max = FALSE.impute_in_classes() allows to apply any imputation
function inside imputation classesimpute_hot_deck_in_classes() hot deck imputation inside
of imputation classes (adjustment cells)impute_EM() imputes values using EM parameter
estimatesimputed_expected_values() imputes expected values from
a multivariate normal distributionimpute_LS_adaptive() performs LSimpute_adaptive as
described by Bo et al. (2004)impute_LS_array() performs LSimpute_array as described
by Bo et al. (2004)impute_LS_combined() performs LSimpute_combined as
described by Bo et al. (2004)impute_LS_gene() performs LSimpute_gene as described by
Bo et al. (2004)cov_only and cor_only as
parameter in
evaluate_imputation_parameters()cols variables: now all should be named
cols_mis, cols_ctrl etc.ds variables: now all should be named
ds_imp, ds_orig etc.pars variables: now all should be named
pars_est or pars_truecols_seq is now correct, if the
donor is only one numeric valueFunctions for the creation of missing values:
delete_MAR_censoring() and
delete_MNAR_censoring() create missing (not) at random
values using a censoring mechanismdelete_MAR_one_group() and
delete_MNAR_one_group() create missing (not) at random
values by deleting values in one of two groupsdelete_MAR_rank() and delete_MNAR_rank()
create missing (not) at random values using a ranking mechanismFunctions for evaluation:
evaluate_imputation_parameters() compares estimated
parameters after imputation to true parametersdelete_MAR_1_to_x() and
delete_MNAR_1_to_x() can now handle (unordered)
factorsevaluate_imputed_values() and
evaluate_parameters(): six forms of NRMSE, nr_equal, nr_NA
and precisionevaluate_imputed_values(): add argument
cols_which to select columns for evaluation.delete_ functions now take the same first three
arguments: ds, p, cols_misFunctions for the creation of missing values:
delete_MCAR() creates missing completely at random
values in different waysdelete_MAR_1_to_x() and
delete_MNAR_1_to_x() create missing (not) at random values
using a 1:x mechanismFunctions for imputation:
impute_mean(), impute_median(),
impute_mode() different forms of mean, median and mode
imputationimpute_sRHD() simple Random Hot-Deck imputation with
the possibility to specify a donor limitapply_imputation() a function to apply aggregating
functions for imputationFunctions for evaluation:
evaluate_imputed_values() compares imputed to true
valuesevaluate_parameters() compares estimated to true
parametersMiscellaneous:
median.factor() computes medians for ordered
factors