Package 'npdsim'

April 9, 2025

Type Package

Title Simulate Demand and Attributes for New Products

Version 1.0.0

Description Simulate demand and attributes for ready to launch new products during their life cycle, or during their introduction and growth phases.

You provide the number of products, attributes, time periods and/or other parameters and 'npdsim' can simulate for you the demand for each product during the considered time periods, and the attributes of each product. The simulation for the demand is based on the idea that each product has a shape and a level, where the level is the cumulative demand over the considered time periods, and the shape is the normalized demand across those time periods.

License MIT + file LICENSE

Encoding UTF-8

URL https://github.com/mohammedhichame/npdsim

 $\pmb{BugReports} \ \text{https://github.com/mohammedhichame/npdsim/issues}$

RoxygenNote 7.3.2

Imports dplyr (>= 1.1.4), tidyr (>= 1.3.1)

Suggests knitr, rmarkdown, testthat (>= 3.0.0), ggplot2

Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Mohammed Hichame BENBITOUR [aut, cre, cph]

Maintainer Mohammed Hichame BENBITOUR <res.mhichame@gmail.com>

Repository CRAN

Date/Publication 2025-04-09 10:20:02 UTC

2 attribute_sim_dep

Contents

	attribute_sim_dep	2
	attribute_sim_ind	3
	demand_sim	4
	npdsim_bass	5
	npd_data_sim	5
	shape_sim	7
	shape_sim_bass	8
	shape_sim_ig	8
	shape_sim_random	9
	shape_sim_trapezoid	9
	shape_sim_triangle	10
Index		11

attribute_sim_dep

Simulate the Attributes with the Assumption of Dependent Attributes

Description

Simulate the attributes for each product with the assumption that some of the attributes related to shapes are also related to some of the attributes of levels. We mean by dependence the fact that some attributes of a product are related at the same time to its shape and level.

Usage

```
attribute_sim_dep(
  product_shapes_and_levels,
  attributes_number,
  shape_attributes_number,
  level_attributes_number
)
```

Arguments

```
product_shapes_and_levels
A numeric dateframe of three columns: product_id, assigned_shape and assigned_level
attributes_number
The number of attributes
shape_attributes_number
The number of attributes assigned to shape
level_attributes_number
The number of attributes assigned to level
```

attribute_sim_ind 3

Value

A numeric dateframe of the following columns: product_id, assigned_shape, assigned_level and attributes (as columns)

Examples

```
attribute_sim_dep(product_shapes_and_levels=
data.frame(product_id=1:4,assigned_shape=c(1,1,2,2),
assigned_level=c(5,3,3,3)),
attributes_number=15,
shape_attributes_number=7,
level_attributes_number=4)
```

attribute_sim_ind

Simulate the Attributes with the Assumption of Independent Attributes

Description

Simulate the attributes for each product with the assumption that the attributes of shapes are independent of the attributes of levels. We mean by independence the fact that each attribute is related to one of the following: shape, level or nothing.

Usage

```
attribute_sim_ind(
  product_shapes_and_levels,
  attributes_number,
  shape_attributes_number,
  level_attributes_number
)
```

Arguments

```
product_shapes_and_levels

A numeric dateframe of three columns: product_id, assigned_shape and assigned_level

attributes_number

The number of attributes
shape_attributes_number

The number of attributes assigned to shape
level_attributes_number

The number of attributes assigned to level
```

Value

A numeric dateframe of the following columns: product_id, assigned_shape, assigned_level and attributes (as columns)

4 demand_sim

Examples

```
attribute_sim_ind(product_shapes_and_levels=
data.frame(product_id=1:4,assigned_shape=c(1,1,2,2),
assigned_level=c(5,3,3,3)),
attributes_number=15,
shape_attributes_number=7,
level_attributes_number=4)
```

demand_sim

Simulate the demand for new products

Description

Simulate the demand for new products over their life cycle by specifying their shape type.

Usage

```
demand_sim(
  products_number,
  periods_number,
  shape_number,
  shape_type = "random",
  level_number,
  level_range = 1000:10000,
  noise_cv = 0.05
)
```

Arguments

products_number

Number of products

periods_number Number of periods of the introduction and growth phases

shape_number Number of generic shapes

shape_type Type of shape to generate. It can take the values: "triangle", "trapezoid", "bass",

"random" and "intro & growth". The type "random" picks one of the types "triangle", "trapezoid", "bass" randomly for each product. The type "intro &

growth" is used for the shapes of the introduction and growth phases.

level_number Number of generic levels

level_range Range of values from which the level is sampled

noise_cv The coefficient of variation of the noise added to the simulated sales

Value

A date frame that contains the following columns: product_id, shape and assigned_shape, level and assigned_level, demand_wn (demand without noise, not rounded), noise and demand. demand is the rounded value of the Max between (demand_wn+noise) and 0

npdsim_bass 5

Examples

```
demand_sim(products_number=100,periods_number=20,shape_number=5, level_number=20)

demand_sim(products_number=100,periods_number=20,shape_number=5, shape_type="bass", level_number=20, level_range=1000:10000,noise_cv=0.05)
```

npdsim_bass

Calculate the Bass probability

Description

Calculate the Bass probability density function of purchase f(t)

Usage

```
npdsim_bass(p_param, q_param, t)
```

Arguments

p_param Coefficient of innovation
q_param Coefficient of imitation

t A numeric vector of time periods

Value

A numeric vector of the probability density function of purchase at time t, f(t)

Examples

```
npdsim_bass(p_param=0.01,q_param=0.2, t=1:20)
```

npd_data_sim

Simulate the demand and attributes for new products

Description

Simulate the demand and attributes for new products during their life cycle by specifying their life cycle type of shape and providing information about their attributes.

6 npd_data_sim

Usage

```
npd_data_sim(
  products_number,
  periods_number,
  shape_number,
  shape_type = "random",
  level_number,
  level_range = 1000:10000,
  noise_cv = 0.05,
  attribute_type = "ind",
  attributes_number = 10,
  shape_attributes_number = 5,
  level_attributes_number = 3
)
```

Arguments

products_number

Number of products

periods_number Number of periods of the introduction and growth phases

shape_number Number of generic shapes

shape_type Type of shape to generate. It can take the values: "triangle", "trapezoid", "bass",

"random" and "intro & growth". The type "random" picks one of the types "triangle", "trapezoid", "bass" randomly for each product. The type "intro &

growth" is used for the shapes of the introduction and growth phases.

level_number Number of generic levels

level_range Range of values from which the level is sampled

noise_cv The coefficient of variation of the noise added to the simulated sales

attribute_type Type of relationship between attributes and shape and level. There can be in-

dependent attributes or dependent attributes. attribute_type takes one of the two values: "dep" and "ind". Check 'attribute_sim_dep' and 'attribute_sim_dep'.

attributes_number

The number of attributes

shape_attributes_number

The number of attributes assigned to shape

level_attributes_number

The number of attributes assigned to level

Value

A date frame that contains the following columns: product_id, demand and attributes.

```
npd_data_sim(products_number=100,
periods_number=30,
```

shape_sim 7

```
shape_number=5,
level_number=20)

npd_data_sim(products_number=100,
periods_number=20,
shape_number=5,
shape_type="bass",
level_number=20,
level_range=1000:10000,
noise_cv=0.05,
attribute_type="ind",
attributes_number=15,
shape_attributes_number=7,
level_attributes_number=5)
```

shape_sim

Generate the shape of demand

Description

Generate the shape of demand for new products by specifying their life cycle shape and the length of their life cycle

Usage

```
shape_sim(periods_number, shape_number, shape_type = "random")
```

Arguments

periods_number Number of time periods of the products life cycle

shape_number Number of generic shapes

shape_type Type of shape to generate. It can take the values: "triangle", "trapezoid", "bass",

"random" and "intro & growth". The type "random" picks one of the types "triangle", "trapezoid", "bass" randomly for each product. The type "intro &

growth" is used for the shapes of the introduction and growth phases.

Value

A numeric dateframe of three columns: time, shape and assigned_shape

```
shape_sim(periods_number=20, shape_number=5)
shape_sim(periods_number=20, shape_number=5,shape_type="trapezoid")
```

8 shape_sim_ig

shape_sim_bass

Generate generic Bass shapes

Description

Generate generic Bass shapes for the demand of new products during their life cycle

Usage

```
shape_sim_bass(periods_number, shape_number)
```

Arguments

```
periods_number Number of time periods of the products life cycle
shape_number Number of generic shapes
```

Value

A numeric dateframe of three columns: time, shape and assigned_shape

Examples

```
shape_sim_bass(periods_number=20, shape_number=5)
```

shape_sim_ig

Generate generic shapes for the introduction and growth phases

Description

Generate piece-wise linear (4 segments) generic shapes for the introduction and growth phases

Usage

```
shape_sim_ig(periods_number, shape_number)
```

Arguments

```
periods_number Number of periods of the introduction and growth phases shape_number Number of generic shapes
```

Value

A numeric dateframe of three columns: time, shape and assigned_shape

```
shape_sim_ig(periods_number=20, shape_number=5)
```

shape_sim_random 9

shape_sim_random

Generate random (Bass, Trapezoidal or Triangular) shapes

Description

Generate random (Bass, Trapezoidal or Triangular) shapes for the demand of new products during their life cycle

Usage

```
shape_sim_random(periods_number, shape_number)
```

Arguments

```
periods_number Number of time periods of the products life cycle
shape_number Number of generic shapes
```

Value

A numeric dateframe of three columns: time, shape and assigned_shape

Examples

```
shape_sim_random(periods_number=20, shape_number=5)
```

shape_sim_trapezoid

Generate trapezoidal shapes

Description

Generate trapezoidal shapes for the demand of new products during their life cycle

Usage

```
shape_sim_trapezoid(periods_number, shape_number)
```

Arguments

```
periods_number Number of time periods of the products life cycle shape_number Number of generic shapes
```

Value

A numeric dateframe of three columns: time, shape and assigned_shape

```
shape_sim_trapezoid(periods_number=20, shape_number=5)
```

shape_sim_triangle

shape_sim_triangle

Generate triangular shapes

Description

Generate triangular shapes for the demand of new products during their life cycle

Usage

```
shape_sim_triangle(periods_number, shape_number)
```

Arguments

```
periods_number Number of time periods of the products life cycle
shape_number Number of generic shapes
```

Value

A numeric dateframe of three columns: time, shape and assigned_shape

```
shape_sim_triangle(periods_number=20, shape_number=5)
```

Index

```
attribute_sim_dep, 2
attribute_sim_ind, 3
demand_sim, 4
npd_data_sim, 5
npdsim_bass, 5
shape_sim_bass, 8
shape_sim_ig, 8
shape_sim_random, 9
shape_sim_trapezoid, 9
shape_sim_triangle, 10
```