You can set several options to
First, we create a tiny data.frame
to demonstrate the effects of the options:
library(sdcLog)
<- data.frame(id = LETTERS[1:3], v1 = 1L:3L, v2 = c(1L, 2L, 4L))
df
df# id v1 v2
# 1 A 1 1
# 2 B 2 2
# 3 C 3 4
By default, sdcLog expects at least five different entities behind each calculated number. The functions in sdcLog derive this number from getOption("sdc.n_ids", default = 5)
. That is, if the option sdc.n_ids
is not set, it defaults to 5
. Consider the following example:
sdc_descriptives(data = df, id_var = "id", val_var = "v1")
# Warning: DISCLOSURE PROBLEM: Not enough distinct entities.
# ────────────────────────────────────────────────── SDC results (descriptives) ──
# OPTIONS: sdc.n_ids: 5 | sdc.n_ids_dominance: 2 | sdc.share_dominance: 0.85
# SETTINGS: id_var: id | val_var: v1 | zero_as_NA: FALSE
# x Not enough distinct entities:
# distinct_ids
# 1: 3
# ────────────────────────────────────────────────────────────────────────────────
This can be adapted to the policy of your research data center by setting the option sdc.n_ids
to the desired value. For example, if your policy allows results to be released if there are at least three different entities behind each number, set
options(sdc.n_ids = 3)
Now, getOption("sdc.n_ids", default = 5)
evaluates to 3
and warnings are thrown only if there are less than three entities behind each result. Note that this is reflected in the first line of output from every function of sdcLog:
sdc_descriptives(data = df, id_var = "id", val_var = "v1")
# ────────────────────────────────────────────────── SDC results (descriptives) ──
# OPTIONS: sdc.n_ids: 3 | sdc.n_ids_dominance: 2 | sdc.share_dominance: 0.85
# SETTINGS: id_var: id | val_var: v1 | zero_as_NA: FALSE
# ✓ Output complies to RDC rules.
# ────────────────────────────────────────────────────────────────────────────────
The default value for sdc.n_ids_dominance
is 2
. In our example, this leads to a warning:
sdc_descriptives(data = df, id_var = "id", val_var = "v2")
# Warning: DISCLOSURE PROBLEM: Dominant entities.
# ────────────────────────────────────────────────── SDC results (descriptives) ──
# OPTIONS: sdc.n_ids: 3 | sdc.n_ids_dominance: 2 | sdc.share_dominance: 0.85
# SETTINGS: id_var: id | val_var: v2 | zero_as_NA: FALSE
# x Dominant entities:
# value_share
# 1: 0.8571429
# ────────────────────────────────────────────────────────────────────────────────
If your policy requires only the largest entity alone to attribute for a share of less than 0.85
, set
options(sdc.n_ids_dominance = 1)
Then, there is no problem in the example:
sdc_descriptives(data = df, id_var = "id", val_var = "v2")
# ────────────────────────────────────────────────── SDC results (descriptives) ──
# OPTIONS: sdc.n_ids: 3 | sdc.n_ids_dominance: 1 | sdc.share_dominance: 0.85
# SETTINGS: id_var: id | val_var: v2 | zero_as_NA: FALSE
# ✓ Output complies to RDC rules.
# ────────────────────────────────────────────────────────────────────────────────
This option differs from the previous ones in the sense that is does not affect actual calculations. Instead, it determines the verbosity of the output of sdcLog functions. Possible values are 0
, 1
(default), and 2
. Before demonstrating the effects of sdc.info_level
, we reset sdc.share_dominance
to it’s default value of 0.85
.
The example below shows the different levels of information printed to the console based on the different levels of sdc.info_level
:
for (i in 0:2) {
options(sdc.info_level = i)
cat("\nsdc.info_level: ", getOption("sdc.info_level"), "\n")
print(sdc_descriptives(data = df, id_var = "id", val_var = "v1"))
}#
# sdc.info_level: 0
# ────────────────────────────────────────────────── SDC results (descriptives) ──
# OPTIONS: sdc.n_ids: 3 | sdc.n_ids_dominance: 2 | sdc.share_dominance: 0.85
# SETTINGS: id_var: id | val_var: v1 | zero_as_NA: FALSE
# ────────────────────────────────────────────────────────────────────────────────
#
# sdc.info_level: 1
# ────────────────────────────────────────────────── SDC results (descriptives) ──
# OPTIONS: sdc.n_ids: 3 | sdc.n_ids_dominance: 2 | sdc.share_dominance: 0.85
# SETTINGS: id_var: id | val_var: v1 | zero_as_NA: FALSE
# ✓ Output complies to RDC rules.
# ────────────────────────────────────────────────────────────────────────────────
#
# sdc.info_level: 2
# ────────────────────────────────────────────────── SDC results (descriptives) ──
# OPTIONS: sdc.n_ids: 3 | sdc.n_ids_dominance: 2 | sdc.share_dominance: 0.85
# SETTINGS: id_var: id | val_var: v1 | zero_as_NA: FALSE
# ✓ No problem with number of distinct entities (3).
# ✓ No problem with dominance (0.83).
# ✓ Output complies to RDC rules.
# ────────────────────────────────────────────────────────────────────────────────
At level 0
, only options and settings are printed. Level 1
also prints a short message about the overall outcome of the checks. Level 2
additionally prints the results of the separate checks on distinct entities and dominance.
Usually, the ID variable does not change during the course of your analysis. Therefore, it is convenient to set
options(sdc.id_var = "id")
Then you do not have to specify id_var
every time you use one of the sdc_*
functions:
sdc_descriptives(data = df, val_var = "v1")
# ────────────────────────────────────────────────── SDC results (descriptives) ──
# OPTIONS: sdc.n_ids: 3 | sdc.n_ids_dominance: 2 | sdc.share_dominance: 0.85
# SETTINGS: id_var: id | val_var: v1 | zero_as_NA: FALSE
# ✓ Output complies to RDC rules.
# ────────────────────────────────────────────────────────────────────────────────
Please note that these options affect all functions of sdcLog, not just sdc_descriptives()
.