
Package ‘singleRcapture’
November 10, 2024

Type Package

Title Single-Source Capture-Recapture Models

Version 0.2.1.3

Description Implementation of single-source capture-recapture methods for population size estima-
tion using zero-truncated, zero-one truncated and zero-truncated one-inflated Poisson, Geomet-
ric and Negative Binomial regression as well as Zelterman's and Chao's regression. Package in-
cludes point and interval estimators for the population size with variances estimated using ana-
lytical or bootstrap method. Details can be found in: van der Heij-
den et all. (2003) <doi:10.1191/1471082X03st057oa>, Böhning and van der Heij-
den (2019) <doi:10.1214/18-AOAS1232>, Böhning et al. (2020) Capture-Recapture Meth-
ods for the Social and Medical Sciences or Böhning and Friedl (2021) <doi:10.1007/s10260-
021-00556-8>.

License MIT + file LICENSE

Encoding UTF-8

LazyData yes

RdMacros mathjaxr

BuildManual TRUE

Depends R (>= 3.5.0)

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

URL https://github.com/ncn-foreigners/singleRcapture

BugReports https://github.com/ncn-foreigners/singleRcapture/issues

Imports stats,
lamW,
mathjaxr,
sandwich,
doParallel,
foreach,
parallel

Suggests rmarkdown,
knitr,
tinytest,
covr,
VGAM

1

https://doi.org/10.1191/1471082X03st057oa
https://doi.org/10.1214/18-AOAS1232
https://doi.org/10.1007/s10260-021-00556-8
https://doi.org/10.1007/s10260-021-00556-8
https://github.com/ncn-foreigners/singleRcapture
https://github.com/ncn-foreigners/singleRcapture/issues

2 carcassubmission

Contents
carcassubmission . 2
chao . 3
confint.singleRStaticCountData . 9
controlMethod . 9
controlModel . 11
controlPopVar . 12
estfun.singleRStaticCountData . 14
estimatePopsize . 15
estimatePopsizeFit . 23
farmsubmission . 27
marginalFreq . 28
netherlandsimmigrant . 29
plot.singleRStaticCountData . 29
popSizeEst . 31
predict.singleRStaticCountData . 32
redoPopEstimation . 33
regDiagSingleR . 35
simulate . 37
stratifyPopsize . 39
summary.singleRmargin . 40
summary.singleRStaticCountData . 41
vcov.singleRStaticCountData . 43

carcassubmission British farm carcass submissions data

Description

Data on British animal farms submissions to AHVLA. British farms are able to submit samples
to AHVLA if cause of death for an animal cannot be determined and private veterinary surgeon
decides to submit them, unless there is notifiable disease suspected then such a submission is not
required.

This data set contains information about such farms. Only submissions that are included in this data
frame are submissions of carcasses i.e. submissions of blood samples etc. are excluded.

Usage

data("carcassubmission")

Format

Data frame with 1,858 rows and 4 columns.

TOTAL_SUB Number of submissions of animal carcasses.

log_size Numerical value equal to logarithm of size of farm.

log_distance Numerical value equal to logarithm of distance to nearest AHVLA center.

C_TYPE Factor describing type of activity on farm that animals are used for. Either Dairy or Beef

chao 3

References

This data set and its description was provided in publication: Böhning, D., Vidal Diez, A., Lerd-
suwansri, R., Viwatwongkasem, C., and Arnold, M. (2013). "A generalization of Chao’s estimator
for covariate information". Biometrics, 69(4), 1033-1042. doi:10.1111/biom.12082

chao Family functions in singleRcapture package

Description

Package singleRcapture utilizes various family type functions that specify variable parts of pop-
ulation size estimation, regression, diagnostics and other necessary information that depends on the
model. These functions are used as model argument in estimatePopsize function.

Usage

chao(lambdaLink = "loghalf", ...)

Hurdleztgeom(
lambdaLink = c("log", "neglog"),
piLink = c("logit", "cloglog", "probit"),
...

)

Hurdleztnegbin(
nSim = 1000,
epsSim = 1e-08,
eimStep = 6,
lambdaLink = c("log", "neglog"),
alphaLink = c("log", "neglog"),
piLink = c("logit", "cloglog", "probit"),
...

)

Hurdleztpoisson(
lambdaLink = c("log", "neglog"),
piLink = c("logit", "cloglog", "probit"),
...

)

oiztgeom(
lambdaLink = c("log", "neglog"),
omegaLink = c("logit", "cloglog", "probit"),
...

)

oiztnegbin(
nSim = 1000,
epsSim = 1e-08,
eimStep = 6,

4 chao

lambdaLink = c("log", "neglog"),
alphaLink = c("log", "neglog"),
omegaLink = c("logit", "cloglog", "probit"),
...

)

oiztpoisson(
lambdaLink = c("log", "neglog"),
omegaLink = c("logit", "cloglog", "probit"),
...

)

zelterman(lambdaLink = "loghalf", ...)

zotgeom(lambdaLink = c("log", "neglog"), ...)

zotnegbin(
nSim = 1000,
epsSim = 1e-08,
eimStep = 6,
lambdaLink = c("log", "neglog"),
alphaLink = c("log", "neglog"),
...

)

zotpoisson(lambdaLink = c("log", "neglog"), ...)

ztHurdlegeom(
lambdaLink = c("log", "neglog"),
piLink = c("logit", "cloglog", "probit"),
...

)

ztHurdlenegbin(
nSim = 1000,
epsSim = 1e-08,
eimStep = 6,
lambdaLink = c("log", "neglog"),
alphaLink = c("log", "neglog"),
piLink = c("logit", "cloglog", "probit"),
...

)

ztHurdlepoisson(
lambdaLink = c("log", "neglog"),
piLink = c("logit", "cloglog", "probit"),
...

)

ztgeom(lambdaLink = c("log", "neglog"), ...)

ztnegbin(

chao 5

nSim = 1000,
epsSim = 1e-08,
eimStep = 6,
lambdaLink = c("log", "neglog"),
alphaLink = c("log", "neglog"),
...

)

ztoigeom(
lambdaLink = c("log", "neglog"),
omegaLink = c("logit", "cloglog", "probit"),
...

)

ztoinegbin(
nSim = 1000,
epsSim = 1e-08,
eimStep = 6,
lambdaLink = c("log", "neglog"),
alphaLink = c("log", "neglog"),
omegaLink = c("logit", "cloglog", "probit"),
...

)

ztoipoisson(
lambdaLink = c("log", "neglog"),
omegaLink = c("logit", "cloglog", "probit"),
...

)

ztpoisson(lambdaLink = c("log", "neglog"), ...)

Arguments

lambdaLink a link for Poisson parameter, "log" by default except for zelterman’s and chao’s
models where only ln

(
x
2

)
is possible.

... Additional arguments, not used for now.

piLink a link for probability parameter, "logit" by default

nSim, epsSim if working weights cannot be computed analytically these arguments specify
maximum number of simulations allowed and precision level for finding them
numerically respectively.

eimStep a non negative integer describing how many values should be used at each step
of approximation of information matrixes when no analytic solution is available
(e.g. "ztnegbin"), default varies depending on a function. Higher value usually
means faster convergence but may potentially cause issues with convergence.

alphaLink a link for dispersion parameter, "log" by default

omegaLink a link for inflation parameter, "logit" by default

6 chao

Details

Most of these functions are based on some "base" distribution with support N0 = N ∪ {0} that
describe distribution of Y before truncation. Currently they include:

P(Y = y|λ, α) =

λye−λ

y! Poisson distribution

Γ(y+α−1)
Γ(α−1)y!

(
α−1

α−1+λ

)α−1 (
λ

α−1+λ

)y
negative binomial distribution

λy

(1+λ)y+1 geometric distribution

where λ is the Poisson parameter and α is the dispersion parameter. Geometric distribution is a
special case of negative binomial distribution when α = 1 it is included because negative binomial
distribution is quite troublesome numerical regression in fitting. It is important to know that PMF
of negative binomial distribution approaches the PMF of Poisson distribution when α → 0+.

Note in literature on single source capture recapture models the dispersion parameter which in-
troduces greater variability in negative binomial distribution compared to Poisson distribution is
generally interpreted as explaining the unobserved heterogeneity i.e. presence of important unob-
served independent variables. All these methods for estimating population size are tied to Poisson
processes hence we use λ as parameter symbol instead of µ to emphasize this connection. Also will
not be hard to see that all estimators derived from modifying the "base" distribution are unbiased if
assumptions made by respective models are not violated.

The zero truncated models corresponding to "base" distributions are characterized by relation:

P(Y = y|Y > 0) =

{
P(Y=y)

1−P(Y=0) when y ̸= 0

0 when y = 0

which allows us to estimate parameter values using only observed part of population. These models
lead to the following estimates, respectively:

N̂ =

Nobs∑
k=1

1

1− exp(−λk)
For Poisson distribution

N̂ =

Nobs∑
k=1

1

1− (1 + αkλk)−α−1
k

For negative binomial distribution

N̂ =

Nobs∑
k=1

1 + λk

λk
For geometric distribution

One common way in which assumptions of zero truncated models are violated is presence of one
inflation the presence of which is somewhat similar in single source capture-recapture models to
zero inflation in usual count data analysis. There are two ways in which one inflation may be
understood, they relate to whether P(Y = 0) is modified by inflation. The first approach is inflate
(ω parameter) zero truncated distribution as:

Pnew(Y = y|Y > 0) =

{
ω + (1− ω)Pold(Y = 1|Y > 0) when: y = 1
(1− ω)Pold(Y = y|Y > 0) when: y ̸= 1

which corresponds to:

Pnew(Y = y) =

 Pold(Y = 0) when: y = 0
ω(1− P(Y = 0)) + (1− ω)Pold(Y = 1) when: y = 1

(1− ω)Pold(Y = y) when: y > 1

chao 7

before zero truncation. Models that utilize this approach are commonly referred to as zero truncated
one inflated models. Another way of accommodating one inflation in SSCR is by putting inflation
parameter on base distribution as:

Pnew(Y = y) =

{
ω + (1− ω)Pold(Y = 1) when: y = 1
(1− ω)Pold(Y = y) when: y ̸= 1

which then becomes:

Pnew(Y = y|Y > 0) =

{
ω

1−(1−ω)Pold(Y=0) +
(1−ω)

1−(1−ω)Pold(Y=0)Pold(Y = 1) when: y = 1
(1−ω)

1−(1−ω)Pold(Y=0)Pold(Y = y) when: y > 1

after truncation. It was shown by Böhning in 2022 paper that these approaches are equivalent in
terms of maximizing likelihoods if we do not put formula on ω. They can however lead to different
population size estimates.

For zero truncated one inflated models the formula for population size estimate N̂ does not change
since P(y = 0) remains the same but estimation of parameters changes all calculations.

For one inflated zero truncated models population size estimates are expressed, respectively by:

N̂ =

Nobs∑
k=1

1

1− (1− ωk) exp(−λk)
For base Poisson distribution

N̂ =

Nobs∑
k=1

1

1− (1− ωk)(1 + αkλk)−α−1
k

For base negative binomial distribution

N̂ =

Nobs∑
k=1

1 + λk

λk + ωk
For base geometric distribution

Zero one truncated models ignore one counts instead of accommodating one inflation by utilizing
the identity

ℓztoi = f1 ln
f1

Nobs
+ (Nobs − f1) ln

(
1− f1

Nobs

)
+ ℓzot

where ℓzot is the log likelihood of zero one truncated distribution characterized by probability mass
function:

P(Y = y|Y > 1) =

{
P(Y=y)

1−P(Y=0)−P(Y=1) when y > 1

0 when y ∈ {0, 1}

where P(Y) is the probability mass function of the "base" distribution. The identity above justifies
use of zero one truncated, unfortunately it was only proven for intercept only models, however
numerical simulations seem to indicate that even if the theorem cannot be extended for (non trivial)
regression population size estimation is still possible.

For zero one truncated models population size estimates are expressed by:

N̂ = f1 +

Nobs∑
k=1

1− λk exp(−λk)

1− exp(−λk)− λk exp(−λk)
For base Poisson distribution

N̂ = f1 +

Nobs∑
k=1

1− λk(1 + αkλk)
−1−α−1

k

1− (1 + αkλk)−α−1
k − λk(1 + αkλk)−1−α−1

k

For base negative binomial distribution

N̂ = f1 +

Nobs∑
k=1

λ2
k + λk + 1

λ2
k

For base geometric distribution

8 chao

Pseudo hurdle models are experimental and not yet described in literature.

Lastly there are chao and zelterman models which are based on logistic regression on the dummy
variable

Z =

{
0 if Y = 1
1 if Y = 2

based on the equation:

logit(pk) = ln

(
λk

2

)
= βxk = ηk

where λk is the Poisson parameter.

The zelterman estimator of population size is expressed as:

N̂ =

Nobs∑
k=1

1− exp (−λk)

and chao estimator has the form:

N̂ = Nobs +

f1+f2∑
k=1

1

λk +
λ2
k

2

Value

A object of class family containing objects:

• makeMinusLogLike – A factory function for creating the following functions: ℓ(β), ∂ℓ
∂β ,

∂2ℓ
∂βT ∂β

functions from the y vector and the Xvlm matrix (or just X if applied to model with single lin-
ear predictor)which has the deriv argument with possible values in c(0, 1, 2) that determine
which derivative to return; the default value is 0, which represents the minus log-likelihood.

• links – A list with link functions.
• mu.eta, variance – Functions of linear predictors that return expected value and variance.

The type argument with 2 possible values ("trunc" and "nontrunc") that specifies whether
to return E(Y |Y > 0), var(Y |Y > 0) or E(Y), var(Y) respectively; the deriv argument with
values in c(0, 1, 2) is used for indicating the derivative with respect to the linear predictors,
which is used for providing standard errors in the predict method.

• family – A string that specifies name of the model.
• valideta, validmu – For now it only returns TRUE. In the near future, it will be used to

check whether applied linear predictors are valid (i.e. are transformed into some elements of
the parameter space subjected to the inverse link function).

• funcZ, Wfun – Functions that create pseudo residuals and working weights used in IRLS
algorithm.

• devResids – A function that given the linear predictors prior weights vector and response
vector returns deviance residuals. Not all family functions have these functions implemented
yet.

• pointEst, popVar – Functions that given prior weights linear predictors and in the latter
case also estimate of cov(β̂) and Xvlm matrix return point estimate for population size and
analytic estimation of its variance.There is a additional boolean parameter contr in the former
function that if set to true returns contribution of each unit.

• etaNames – Names of linear predictors.
• densityFunction – A function that given linear predictors returns value of PMF at values x.

Additional argument type specifies whether to return P(Y |Y > 0) or P(Y).
• simulate – A function that generates values of a dependent vector given linear predictors.
• getStart – An expression for generating starting points.

confint.singleRStaticCountData 9

Author(s)

Piotr Chlebicki, Maciej Beręsewicz

See Also

estimatePopsize()

confint.singleRStaticCountData

Confidence Intervals for Model Parameters

Description

A function that computes studentized confidence intervals for model coefficients.

Usage

S3 method for class 'singleRStaticCountData'
confint(object, parm, level = 0.95, ...)

Arguments

object object of singleRStaticCountData class.

parm names of parameters for which confidence intervals are to be computed, if miss-
ing all parameters will be considered.

level confidence level for intervals.

... currently does nothing.

Value

An object with named columns that include upper and lower limit of confidence intervals.

controlMethod Control parameters for regression

Description

controlMethod constructs a list with all necessary control parameters for regression fitting in
estimatePopsizeFit and estimatePopsize.

10 controlMethod

Usage

controlMethod(
epsilon = 1e-08,
maxiter = 1000,
verbose = 0,
printEveryN = 1L,
coefStart = NULL,
etaStart = NULL,
optimMethod = "Nelder-Mead",
silent = FALSE,
optimPass = FALSE,
stepsize = 1,
checkDiagWeights = TRUE,
weightsEpsilon = 1e-08,
momentumFactor = 0,
saveIRLSlogs = FALSE,
momentumActivation = 5,
criterion = c("coef", "abstol", "reltol")

)

Arguments

epsilon a tolerance level for fitting algorithms by default 1e-8.

maxiter a maximum number of iterations.

verbose a numeric value indicating whether to trace steps of fitting algorithm for IRLS
fitting method different values of verbose give the following information:

• 1 – Returns information on the number of current iteration and current log-
likelihood.

• 2 – Returns information on vector of regression parameters at current itera-
tion (and all of the above).

• 3 – Returns information on reduction of log-likelihood at current iteration
(and all of the above).

• 4 – Returns information on value of log-likelihood function gradient at cur-
rent iteration (and all of the above).

• 5 – Returns information on convergence criterion and values that are taken
into account when considering convergence (and all of the above).

if optim method was chosen verbose will be passed to stats::optim() as trace.

printEveryN an integer value indicating how often to print information specified in verbose,
by default set to 1.

coefStart, etaStart
initial parameters for regression coefficients or linear predictors if NULL. For
IRLS fitting only etaStart is needed so if coefStart is provided it will be
converted to etaStart, for optim fitting coefStart is necessary and argument
etaStart will be ignored.

optimMethod a method of stats::optim() used "Nelder-Mead" is the default .

silent a logical value, indicating whether warnings in IRLS method should be sup-
pressed.

optimPass an optional list of parameters passed to stats::optim(..., control = optimPass)
if FALSE then list of control parameters will be inferred from other parameters.

controlModel 11

stepsize only for IRLS, scaling of updates to beta vector lower value means slower con-
vergence but more accuracy by default 1. In general if fitting algorithm fails
lowering this value tends to be most effective at correcting it.

checkDiagWeights

a logical value indicating whether to check if diagonal elements of working
weights matrixes in IRLS are sufficiently positive so that these matrixes are pos-
itive defined. By default TRUE.

weightsEpsilon a small number to ensure positive definedness of weights matrixes. Only matters
if checkDiagWeights is set to TRUE. By default 1e-8.

momentumFactor an experimental parameter in IRLS only allowing for taking previous step into
account at current step, i.e instead of updating regression parameters as:

β(a) = β(a−1) + stepsize · step(a)

the update will be made as:

β(a) = β(a−1) + stepsize · (step(a) + momentum · step(a−1))

saveIRLSlogs a logical value indicating if information specified in verbose should be saved to
output object, by default FALSE.

momentumActivation

the value of log-likelihood reduction bellow which momentum will apply.

criterion a criterion used to determine convergence in IRLS, multiple values may be pro-
vided. By default c("coef", "abstol").

Value

List with selected parameters, it is also possible to call list directly.

Author(s)

Piotr Chlebicki, Maciej Beręsewicz

See Also

estimatePopsize() estimatePopsizeFit() controlModel() controlPopVar()

controlModel Control parameters specific to some models

Description

controlModel constructs a list with all necessary control parameters in estimatePopsize that are
either specific to selected model or do not fit anywhere else.

Specifying additional formulas should be done by using only right hand side of the formula also for
now all variables from additional formulas should also be included in the "main" formula.

12 controlPopVar

Usage

controlModel(
weightsAsCounts = FALSE,
omegaFormula = ~1,
alphaFormula = ~1,
piFormula = ~1

)

Arguments

weightsAsCounts

a boolean value indicating whether to treat weights argument as number of oc-
currences for each row in the data and adjust necessary methods and function-
alities, like adjustments in bootstrap or decreasing weights in dfbeta instead or
deleting rows from data, to accommodate this form of model specification.

omegaFormula a formula for inflation parameter in one inflated zero truncated and zero trun-
cated one inflated models.

alphaFormula a formula for dispersion parameter in negative binomial based models.

piFormula a formula for probability parameter in pseudo hurdle zero truncated and zero
truncated pseudo hurdle models.

Value

A list with selected parameters, it is also possible to call list directly.

Author(s)

Piotr Chlebicki, Maciej Beręsewicz

See Also

estimatePopsize() controlMethod() controlPopVar() singleRmodels()

controlPopVar Control parameters for population size estimation

Description

Creating control parameters for population size estimation and respective standard error and vari-
ance estimation.

Usage

controlPopVar(
alpha = 0.05,
bootType = c("parametric", "semiparametric", "nonparametric"),
B = 500,
confType = c("percentilic", "normal", "basic"),
keepbootStat = TRUE,
traceBootstrapSize = FALSE,

controlPopVar 13

bootstrapVisualTrace = FALSE,
fittingMethod = c("optim", "IRLS"),
bootstrapFitcontrol = NULL,
sd = c("sqrtVar", "normalMVUE"),
covType = c("observedInform", "Fisher"),
cores = 1L

)

Arguments

alpha a significance level, 0.05 used by default.

bootType the bootstrap type to be used. Default is "parametric", other possible values
are: "semiparametric" and "nonparametric".

B a number of bootstrap samples to be performed (default 500).

confType a type of confidence interval for bootstrap confidence interval, "percentile"
by default. Other possibilities: "studentized" and "basic".

keepbootStat a boolean value indicating whether to keep a vector of statistics produced by
bootstrap.

traceBootstrapSize

a boolean value indicating whether to print size of bootstrapped sample after
truncation for semi- and fully parametric bootstraps.

bootstrapVisualTrace

a boolean value indicating whether to plot bootstrap statistics in real time if
cores = 1 if cores > 1 it instead indicates whether to make progress bar.

fittingMethod a method used for fitting models from bootstrap samples.
bootstrapFitcontrol

control parameters for each regression works exactly like controlMethod but
for fitting models from bootstrap samples.

sd a character indicating how to compute standard deviation of population size es-
timator either as:

σ̂ =

√
v̂ar(N̂)

for sqrt (which is slightly biased if N̂ has a normal distribution) or for normalMVUE
as the unbiased minimal variance estimator for normal distribution:

σ̂ =

√
v̂ar(N̂)

Γ
(
Nobs−1

2

)
Γ
(
Nobs

2

) √Nobs

2

where the ration involving gamma functions is computed by log gamma func-
tion.

covType a type of covariance matrix for regression parameters by default observed infor-
mation matrix.

cores for bootstrap only, a number of processor cores to be used, any number greater
than 1 activates code designed with doParallel, foreach and parallel pack-
ages. Note that for now using parallel computing makes tracing impossible so
traceBootstrapSize and bootstrapVisualTrace parameters are ignored in
this case.

Value

A list with selected parameters, it is also possible to call list directly.

14 estfun.singleRStaticCountData

Author(s)

Piotr Chlebicki, Maciej Beręsewicz

See Also

estimatePopsize() controlModel() controlMethod()

estfun.singleRStaticCountData

Heteroscedasticity-Consistent Covariance Matrix Estimation for sin-
gleRStaticCountData class

Description

S3 method for vcovHC to handle singleRStaticCountData class objects. Works exactly like
vcovHC.default the only difference being that this method handles vector generalised linear mod-
els. Updating the covariance matrix in variance/standard error estimation for population size esti-
mator can be done via redoPopEstimation()

Usage

S3 method for class 'singleRStaticCountData'
estfun(x, ...)

S3 method for class 'singleRStaticCountData'
bread(x, ...)

S3 method for class 'singleRStaticCountData'
vcovHC(
x,
type = c("HC3", "const", "HC", "HC0", "HC1", "HC2", "HC4", "HC4m", "HC5"),
omega = NULL,
sandwich = TRUE,
...

)

Arguments

x a fitted singleRStaticCountData class object.

... for vcovHC additional optional arguments passed to the following functions:

• estfun – for empirical estimating functions.
• hatvalues – for diagonal elements of projection matrix.
• sandwich – only if sandwich argument in function call was set to TRUE.
• vcov – when calling bread internally.

type a character string specifying the estimation type, same as in sandwich::vcovHC.default.
HC3 is the default value.

omega a vector or a function depending on the arguments residuals (i.e. the derivative
of log-likelihood with respect to each linear predictor), diaghat (the diagonal of
the corresponding hat matrix) and df (the residual degrees of freedom), same as
in sandwich::vcovHC.default.

estimatePopsize 15

sandwich logical. Should the sandwich estimator be computed? If set to FALSE only the
meat matrix is returned. Same as in sandwich::vcovHC()

Value

Variance-covariance matrix estimation corrected for heteroscedasticity of regression errors.

Author(s)

Piotr Chlebicki, Maciej Beręsewicz

See Also

sandwich::vcovHC() redoPopEstimation()

Examples

set.seed(1)
N <- 10000
gender <- rbinom(N, 1, 0.2)
eta <- -1 + 0.5*gender
counts <- rpois(N, lambda = exp(eta))
df <- data.frame(gender, eta, counts)
df2 <- subset(df, counts > 0)
mod1 <- estimatePopsize(

formula = counts ~ 1 + gender,
data = df2,
model = "ztpoisson",
method = "optim",
popVar = "analytic"

)
require(sandwich)
HC <- sandwich::vcovHC(mod1, type = "HC4")
Fisher <- vcov(mod1, "Fisher") # variance covariance matrix obtained from
#Fisher (expected) information matrix
HC
Fisher
usual results
summary(mod1)
updated results
summary(mod1, cov = HC,
popSizeEst = redoPopEstimation(mod1, cov = HC))
estimating equations
mod1_sims <- sandwich::estfun(mod1)
head(mod1_sims)
bread method
all(vcov(mod1, "Fisher") * nrow(df2) == sandwich::bread(mod1, type = "Fisher"))

estimatePopsize Single source capture-recapture models

16 estimatePopsize

Description

estimatePopsize first fits appropriate (v)glm model and then estimates full (observed and unob-
served) population size. In this types of models it is assumed that the response vector (i.e. the
dependent variable) corresponds to the number of times a given unit was observed in the source.
Population size is then usually estimated by Horvitz-Thompson type estimator:

N̂ =

N∑
k=1

Ik
P(Yk > 0)

=

Nobs∑
k=1

1

1− P(Yk = 0)

where Ik = IYk>0 are indicator variables, with value 1 if kth unit was observed at least once and 0
otherwise.

Usage

estimatePopsize(formula, ...)

Default S3 method:
estimatePopsize(
formula,
data,
model = c("ztpoisson", "ztnegbin", "ztgeom", "zotpoisson", "ztoipoisson",
"oiztpoisson", "ztHurdlepoisson", "Hurdleztpoisson", "zotnegbin", "ztoinegbin",
"oiztnegbin", "ztHurdlenegbin", "Hurdleztnegbin", "zotgeom", "ztoigeom", "oiztgeom",
"ztHurdlegeom", "ztHurdlegeom", "zelterman", "chao"),

weights = NULL,
subset = NULL,
naAction = NULL,
method = c("optim", "IRLS"),
popVar = c("analytic", "bootstrap", "noEst"),
controlMethod = NULL,
controlModel = NULL,
controlPopVar = NULL,
modelFrame = TRUE,
x = FALSE,
y = TRUE,
contrasts = NULL,
ratioReg = FALSE,
offset,
...

)

Arguments

formula a formula for the model to be fitted, only applied to the "main" linear predictor.
Only single response models are available.

... additional optional arguments passed to other methods eg. estimatePopsizeFit.

data a data frame or object coercible to data.frame class containing data for the re-
gression and population size estimation.

model a model for regression and population estimate full description in singleRmodels().

weights an optional object of prior weights used in fitting the model. Can be used to
specify number of occurrences of rows in data see controlModel()

estimatePopsize 17

subset a logical vector indicating which observations should be used in regression and
population size estimation. It will be evaluated on data argument provided on
call.

naAction Not yet implemented.

method a method for fitting values currently supported: iteratively reweighted least
squares (IRLS) and maximum likelihood (optim).

popVar a method of constructing confidence interval and estimating the standard error
either analytic or bootstrap. Bootstrap confidence interval type may be specified
in controlPopVar. There is also the third possible value of noEst which skips
the population size estimate all together.

controlMethod a list indicating parameters to use in fitting the model may be constructed with
singleRcapture::controlMethod function. More information included in
controlMethod().

controlModel a list indicating additional formulas for regression (like formula for inflation pa-
rameter/dispersion parameter) may be constructed with singleRcapture::controlModel
function. More information will eventually be included in controlModel().

controlPopVar a list indicating parameters to use in estimating variance of population size esti-
mation may be constructed with singleRcapture::controlPopVar function.
More information included in controlPopVar().

modelFrame, x, y logical values indicating whether to return model matrix, dependent vector and
model matrix as a part of output.

contrasts not yet implemented.

ratioReg Not yet implemented

offset a matrix of offset values with the number of columns matching the number of
distribution parameters providing offset values to each of linear predictors.

Details

The generalized linear model is characterized by equation

η = Xβ

where X is the (lm) model matrix. The vector generalized linear model is similarly characterized
by equations

ηk = Xkβk

where Xk is a (lm) model matrix constructed from appropriate formula (specified in controlModel
parameter).

The η is then a vector constructed as:

η =

η1

η2

. . .
ηp

T

and in cases of models in our package the (vlm) model matrix is constructed as a block matrix:

Xvlm =

X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xp

18 estimatePopsize

this differs from convention in VGAM package (if we only consider our special cases of vglm models)
but this is just a convention and does not affect the model, this convention is taken because it
makes fitting with IRLS (explanation of algorithm in estimatePopsizeFit()) algorithm easier.
(If constraints matrixes in vglm match the ones we implicitly use the vglm model matrix differs
with respect to order of kronecker multiplication of X and constraints.) In this package we use
observed likelihood to fit regression models.

As mentioned above usually the population size estimation is done via:

N̂ =

N∑
k=1

Ik
P(Yk > 0)

=

Nobs∑
k=1

1

1− P(Yk = 0)

where Ik = IYk>0 are indicator variables, with value 1 if kth unit was observed at least once and 0
otherwise. The P(Yk > 0) are estimated by maximum likelihood.

The following assumptions are usually present when using the method of estimation described
above:

1. The specified regression model is correct. This entails linear relationship between indepen-
dent variables and dependent ones and dependent variable being generated by appropriate
distribution.

2. No unobserved heterogeneity. If this assumption is broken there are some possible (admittedly
imperfect) workarounds see details in singleRmodels().

3. The population size is constant in relevant time frame.

4. Depending on confidence interval construction (asymptotic) normality of N̂ statistic is as-
sumed.

There are two ways of estimating variance of estimate N̂ , the first being "analytic" usually done
by application of law of total variance to N̂ :

var(N̂) = E
(

var
(
N̂ |I1, . . . , In

))
+ var

(
E(N̂ |I1, . . . , In)

)

and then by δ method to N̂ |I1, . . . IN :

E
(

var
(
N̂ |I1, . . . , In

))
=

(
∂(N |I1, . . . , IN)

∂β

)T

cov (β)
(
∂(N |I1, . . . , IN)

∂β

)∣∣∣∣∣
β=β̂

and the var
(
E(N̂ |I1, . . . , In)

)
term may be derived analytically (if we assume independence of

observations) since N̂ |I1, . . . , In is just a constant.

estimatePopsize 19

In general this gives us:

var
(
E(N̂ |I1, . . . , In)

)
= var

(
N∑

k=1

Ik
P(Yk > 0)

)

=

N∑
k=1

var
(

Ik
P(Yk > 0)

)

=

N∑
k=1

1

P(Yk > 0)2
var(Ik)

=

N∑
k=1

1

P(Yk > 0)2
P(Yk > 0)(1− P(Yk > 0))

=

N∑
k=1

1

P(Yk > 0)
(1− P(Yk > 0))

≈
N∑

k=1

Ik
P(Yk > 0)2

(1− P(Yk > 0))

=

Nobs∑
k=1

1− P(Yk > 0)

P(Yk > 0)2

Where the approximation on 6th line appears because in 5th line we sum over all units, that includes
unobserved units, since Ik are independent and Ik ∼ b(P(Yk > 0)) the 6th line is an unbiased
estimator of the 5th line.

The other method for estimating variance is "bootstrap", but since Nobs =
∑N

k=1 Ik is also a ran-
dom variable bootstrap will not be as simple as just drawing Nobs units from data with replacement
and just computing N̂ .

Method described above is referred to in literature as "nonparametric" bootstrap (see controlPopVar()),
due to ignoring variability in observed sample size it is likely to underestimate variance.

A more sophisticated bootstrap procedure may be described as follows:

1. Compute the probability distribution as:

f̂0

N̂
,
f1

N̂
, . . . ,

fmax y

N̂

where fn denotes observed marginal frequency of units being observed exactly n times.

2. Draw N̂ units from the distribution above (if N̂ is not an integer than draw ⌊N̂⌋+b(N̂−⌊N̂⌋)),
where ⌊·⌋ is the floor function.

3. Truncated units with y = 0.

4. If there are covariates draw them from original data with replacement from uniform distribu-
tion. For example if unit drawn to new data has y = 2 choose one of covariate vectors from
original data that was associated with unit for which was observed 2 times.

5. Regress ynew on Xvlmnew and obtain β̂new, with starting point β̂ to make it slightly faster,
use them to compute N̂new.

6. Repeat 2-5 unit there are at least B statistics are obtained.

7. Compute confidence intervals based on alpha and confType specified in controlPopVar().

20 estimatePopsize

To do step 1 in procedure above it is convenient to first draw binary vector of length ⌊N̂⌋+ b(N̂ −
⌊N̂⌋) with probability 1 − f̂0

N̂
, sum elements in that vector to determine the sample size and then

draw sample of this size uniformly from the data.

This procedure is known in literature as "semiparametric" bootstrap it is necessary to assume that
the have a correct estimate N̂ in order to use this type of bootstrap.

Lastly there is "paramteric" bootstrap where we assume that the probabilistic model used to obtain
N̂ is correct the bootstrap procedure may then be described as:

1. Draw ⌊N̂⌋+b(N̂−⌊N̂⌋) covariate information vectors with replacement from data according
to probability distribution that is proportional to: Nk, where Nk is the contribution of kth unit

i.e.
1

P(Yk > 0)
.

2. Determine η matrix using estimate β̂.

3. Generate y (dependent variable) vector using η and probability mass function associated with
chosen model.

4. Truncated units with y = 0 and construct ynew and Xvlmnew.

5. Regress ynew on Xvlmnew and obtain β̂new use them to compute N̂new.

6. Repeat 1-5 unit there are at least B statistics are obtained.

7. Compute confidence intervals based on alpha and confType specified in controlPopVar()

It is also worth noting that in the "analytic" method estimatePopsize only uses "standard"
covariance matrix estimation. It is possible that improper covariance matrix estimate is the only part
of estimation that has its assumptions violated. In such cases post-hoc procedures are implemented
in this package to address this issue.

Lastly confidence intervals for N̂ are computed (in analytic case) either by assuming that it follows
a normal distribution or that variable ln(N − N̂) follows a normal distribution.

These estimates may be found using either summary.singleRStaticCountData method or popSizeEst.singleRStaticCountData
function. They’re labelled as normal and logNormal respectively.

Value

Returns an object of class c("singleRStaticCountData", "singleR", "glm", "lm") with type
list containing:

• y – Vector of dependent variable if specified at function call.

• X – Model matrix if specified at function call.

• formula – A list with formula provided on call and additional formulas specified in controlModel.

• call – Call matching original input.

• coefficients – A vector of fitted coefficients of regression.

• control – A list of control parameters for controlMethod and controlModel, controlPopVar
is included in populationSize.

• model – Model which estimation of population size and regression was built, object of class
family.

• deviance – Deviance for the model.

• priorWeights – Prior weight provided on call.

• weights – If IRLS method of estimation was chosen weights returned by IRLS, otherwise
same as priorWeights.

estimatePopsize 21

• residuals – Vector of raw residuals.

• logL – Logarithm likelihood obtained at final iteration.

• iter – Numbers of iterations performed in fitting or if stats::optim was used number of
call to loglikelihood function.

• dfResiduals – Residual degrees of freedom.

• dfNull – Null degrees of freedom.

• fittValues – Data frame of fitted values for both mu (the expected value) and lambda (Pois-
son parameter).

• populationSize – A list containing information of population size estimate.

• modelFrame – Model frame if specified at call.

• linearPredictors – Vector of fitted linear predictors.

• sizeObserved – Number of observations in original model frame.

• terms – terms attribute of model frame used.

• contrasts – contrasts specified in function call.

• naAction – naAction used.

• which – list indicating which observations were used in regression/population size estimation.

• fittingLog – log of fitting information for "IRLS" fitting if specified in controlMethod.

Author(s)

Piotr Chlebicki, Maciej Beręsewicz

References

General single source capture recapture literature:

Zelterman, Daniel (1988). ‘Robust estimation in truncated discrete distributions with application to
capture-recapture experiments’. In: Journal of statistical planning and inference 18.2, pp. 225–237.

Heijden, Peter GM van der et al. (2003). ‘Point and interval estimation of the population size
using the truncated Poisson regression model’. In: Statistical Modelling 3.4, pp. 305–322. doi:
10.1191/1471082X03st057oa.

Cruyff, Maarten J. L. F. and Peter G. M. van der Heijden (2008). ‘Point and Interval Estimation of
the Population Size Using a Zero-Truncated Negative Binomial Regression Model’. In: Biometrical
Journal 50.6, pp. 1035–1050. doi: 10.1002/bimj.200810455

Böhning, Dankmar and Peter G. M. van der Heijden (2009). ‘A covariate adjustment for zero-
truncated approaches to estimating the size of hidden and elusive populations’. In: The Annals of
Applied Statistics 3.2, pp. 595–610. doi: 10.1214/08-AOAS214.

Böhning, Dankmar, Alberto Vidal-Diez et al. (2013). ‘A Generalization of Chao’s Estimator for
Covariate Information’. In: Biometrics 69.4, pp. 1033– 1042. doi: 10.1111/biom.12082

Böhning, Dankmar and Peter G. M. van der Heijden (2019). ‘The identity of the zero-truncated,
one-inflated likelihood and the zero-one-truncated likelihood for general count densities with an
application to drink-driving in Britain’. In: The Annals of Applied Statistics 13.2, pp. 1198–1211.
doi: 10.1214/18-AOAS1232.

Navaratna WC, Del Rio Vilas VJ, Böhning D. Extending Zelterman’s approach for robust estima-
tion of population size to zero-truncated clustered Data. Biom J. 2008 Aug;50(4):584-96. doi:
10.1002/bimj.200710441.

22 estimatePopsize

Böhning D. On the equivalence of one-inflated zero-truncated and zero-truncated one-inflated count
data likelihoods. Biom J. 2022 Aug 15. doi: 10.1002/bimj.202100343.

Böhning, D., Friedl, H. Population size estimation based upon zero-truncated, one-inflated and
sparse count data. Stat Methods Appl 30, 1197–1217 (2021). doi: 10.1007/s10260-021-00556-8

Bootstrap:

Zwane, PGM EN and Van der Heijden, Implementing the parametric bootstrap in capture-recapture
models with continuous covariates 2003 Statistics & probability letters 65.2 pp 121-125

Norris, James L and Pollock, Kenneth H Including model uncertainty in estimating variances in
multiple capture studies 1996 in Environmental and Ecological Statistics 3.3 pp 235-244

Vector generalized linear models:

Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R.
New York, USA: Springer. ISBN 978-1-4939-2817-0.

See Also

stats::glm() – For more information on generalized linear models.

stats::optim() – For more information on optim function used in optim method of fitting re-
gression.

controlMethod() – For control parameters related to regression.

controlPopVar() – For control parameters related to population size estimation.

controlModel() – For control parameters related to model specification.

estimatePopsizeFit() – For more information on fitting procedure in esitmate_popsize.

popSizeEst() redoPopEstimation() – For extracting population size estimation results are ap-
plying post-hoc procedures.

summary.singleRStaticCountData() – For summarizing important information about the model
and population size estimation results.

marginalFreq() – For information on marginal frequencies and comparison between observed and
fitted quantities.

VGAM::vglm() – For more information on vector generalized linear models.

singleRmodels() – For description of various models.

Examples

Model from 2003 publication
Point and interval estimation of the
population size using the truncated Poisson regression mode
Heijden, Peter GM van der et al. (2003)
model <- estimatePopsize(

formula = capture ~ gender + age + nation,
data = netherlandsimmigrant,
model = ztpoisson

)
summary(model)
Graphical presentation of model fit
plot(model, "rootogram")
Statistical test
see documentation for summary.singleRmargin
summary(marginalFreq(model), df = 1, "group")

estimatePopsizeFit 23

We currently support 2 methods of numerical fitting
(generalized) IRLS algorithm and via stats::optim
the latter one is faster when fitting negative binomial models
(and only then) due to IRLS having to numerically compute
(expected) information matrixes, optim is also less reliable when
using alphaFormula argument in controlModel
modelNegBin <- estimatePopsize(

formula = TOTAL_SUB ~ .,
data = farmsubmission,
model = ztnegbin,
method = "optim"

)
summary(modelNegBin)
summary(marginalFreq(modelNegBin))

More advanced call that specifies additional formula and shows
in depth information about fitting procedure
pseudoHurdleModel <- estimatePopsize(

formula = capture ~ nation + age,
data = netherlandsimmigrant,
model = Hurdleztgeom,
method = "IRLS",
controlMethod = controlMethod(verbose = 5),
controlModel = controlModel(piFormula = ~ gender)

)
summary(pseudoHurdleModel)
Assessing model fit
plot(pseudoHurdleModel, "rootogram")
summary(marginalFreq(pseudoHurdleModel), "group", df = 1)

A advanced input with additional information for fitting procedure and
additional formula specification and different link for inflation parameter.
Model <- estimatePopsize(
formula = TOTAL_SUB ~ .,
data = farmsubmission,
model = oiztgeom(omegaLink = "cloglog"),
method = "IRLS",
controlMethod = controlMethod(
stepsize = .85,
momentumFactor = 1.2,
epsilon = 1e-10,
silent = TRUE

),
controlModel = controlModel(omegaFormula = ~ C_TYPE + log_size)

)
summary(marginalFreq(Model), df = 18 - length(Model$coefficients))
summary(Model)

estimatePopsizeFit Regression fitting in single source capture-recapture models

24 estimatePopsizeFit

Description

estimatePopsizeFit does for estimatePopsize what glm.fit does for glm. It is internally
called in estimatePopsize. Since estimatePopsize does much more than just regression fitting
estimatePopsizeFit is much faster.

Usage

estimatePopsizeFit(
y,
X,
family,
control,
method,
priorWeights,
coefStart,
etaStart,
offset,
...

)

Arguments

y vector of dependent variables.

X model matrix, the vglm one.

family same as model in estimatePopsize.

control control parameters created in controlModel.

method method of estimation same as in estimatePopsize.

priorWeights vector of prior weights its the same argument as weights in estimatePopsize.
etaStart, coefStart

initial value of regression parameters or linear predictors.

offset offset passed from by default passed from estimatePopsize().

... arguments to pass to other methods.

Details

If method argument was set to "optim" the stats::optim function will be used to fit regression
with analytically computed gradient and (minus) log likelihood functions as gr and fn arguments.
Unfortunately optim does not allow for hessian to be specified. More information about how to
modify optim fitting is included in controlMethod().

If method argument was set to "IRLS" the iteratively reweighted least squares. The algorithm is
well know in generalised linear models. Thomas W. Yee later extended this algorithm to vector
generalised linear models and in more general terms it can roughly be described as (this is Yee’s
description after changing some conventions):

1. Initialize with:

• converged <- FALSE

• iter <- 1

• β <- start

• W <- prior

estimatePopsizeFit 25

• ℓ <- ℓ(β)

2. If converged or iter > Maxiter move to step 7.

3. Store values from previous algorithm step:

• W− <- W

• ℓ− <- ℓ

• β− <- β

and assign values at current step:

• η <- Xvlmβ

• Zi <- ηi +
∂ℓi
∂ηi

E
(

∂2ℓi
∂ηT

i ∂ηi

)−1

• W ij <- E
(

∂2ℓ
∂ηT

j ∂ηi

)
where ℓi is the ith component of log likelihood function, ηi is the vector of linear predictors
associated with ith row and E

(
∂2ℓi

∂ηT
i ∂ηi

)
corresponds to weights associated with ith row and

W is a block matrix, made of diagonal matrixes E
(

∂2ℓ
∂ηT

j ∂ηi

)
4. Regress Z on Xvlm to obtain β as:

β =
(
XT

vlmWXvlm

)−1

XT
vlmWZ

5. Assign:

• converged <- ℓ(β)− ℓ− < ε · ℓ− or ||β − β−||∞ < ε

• iter <- iter + 1

where ε is the relative tolerance level, by default 1e-8.

6. Return to step 2.

7. Return β,W , iter.

In this package we use different conventions for Xvlm matrix hence slight differences are present
in algorithm description but results are identical.

Value

List with regression parameters, working weights (if IRLS fitting method) was chosen and number
of iterations taken.

Author(s)

Piotr Chlebicki, Maciej Beresewicz

References

Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R.
New York, USA: Springer. ISBN 978-1-4939-2817-0.

See Also

stats::glm() estimatePopsize() controlMethod() stats::optim()

26 estimatePopsizeFit

Examples

summary(farmsubmission)

construct vglm model matrix
X <- matrix(data = 0, nrow = 2 * NROW(farmsubmission), ncol = 7)
X[1:NROW(farmsubmission), 1:4] <- model.matrix(
~ 1 + log_size + log_distance + C_TYPE,
farmsubmission
)

X[-(1:NROW(farmsubmission)), 5:7] <- X[1:NROW(farmsubmission), c(1, 3, 4)]

this attribute tells the function which elements of the design matrix
correspond to which linear predictor
attr(X, "hwm") <- c(4, 3)

get starting points
start <- glm.fit(
y = farmsubmission$TOTAL_SUB,
x = X[1:NROW(farmsubmission), 1:4],
family = poisson()
)$coefficients

res <- estimatePopsizeFit(
y = farmsubmission$TOTAL_SUB,
X = X,
method = "IRLS",
priorWeights = 1,
family = ztoigeom(),
control = controlMethod(verbose = 5),
coefStart = c(start, 0, 0, 0),
etaStart = matrix(X %*% c(start, 0, 0, 0), ncol = 2),
offset = cbind(rep(0, NROW(farmsubmission)), rep(0, NROW(farmsubmission)))
)

extract results

regression coefficient vector
res$beta

check likelihood
ll <- ztoigeom()$makeMinusLogLike(y = farmsubmission$TOTAL_SUB, X = X)

-ll(res$beta)

number of iterations
res$iter

working weights
head(res$weights)

Compare with optim call

res2 <- estimatePopsizeFit(
y = farmsubmission$TOTAL_SUB,

farmsubmission 27

X = X,
method = "optim",
priorWeights = 1,
family = ztoigeom(),
coefStart = c(start, 0, 0, 0),
control = controlMethod(verbose = 1, silent = TRUE),
offset = cbind(rep(0, NROW(farmsubmission)), rep(0, NROW(farmsubmission)))

)
extract results

regression coefficient vector
res2$beta

check likelihood
-ll(res2$beta)

number of calls to log lik function
since optim does not return the number of
iterations
res2$iter

optim does not calculated working weights
head(res2$weights)

farmsubmission British farm submissions data

Description

Data on British animal farms submissions to AHVLA. British farms are able to submit samples
to AHVLA if cause of death for an animal cannot be determined and private veterinary surgeon
decides to submit them, unless there is notifiable disease suspected then such a submission is not
required.

This data set contains information about such farms. All submissions from farms are included in
this data frame not only carcasses but also blood samples etc.

Usage

data("farmsubmission")

Format

Data frame with 12,036 rows and 4 columns.

TOTAL_SUB Number of submissions of animal material.

log_size Numerical value equal to logarithm of size of farm.

log_distance Numerical value equal to logarithm of distance to nearest AHVLA center.

C_TYPE Factor describing type of activity on farm that animals are used for. Either Dairy or Beef

28 marginalFreq

References

This data set and its description was provided in publication: Böhning, D., Vidal Diez, A., Lerd-
suwansri, R., Viwatwongkasem, C., and Arnold, M. (2013). "A generalization of Chao’s estimator
for covariate information". Biometrics, 69(4), 1033-1042. doi:10.1111/biom.12082

marginalFreq Observed and fitted marginal Frequencies

Description

A function that given a fitted singleR class object computed marginal frequencies by as sum of
probability density functions for each unit in data at each point i.e. kth element of marginal fre-
quency table is given by

∑Nobs

j=1 P(Yj = k|ηj). For k=0 only (if specified at call) they are computed
as N̂ −Nobs because f0 is assumed to the unobserved part of the studied population.

These frequencies are useful in diagnostics for count data regression, such as assessment of fit.

Usage

marginalFreq(
object,
includeones = TRUE,
includezeros = TRUE,
onecount = NULL,
range,
...

)

Arguments

object object of singleR class.
includeones logical value indicating whether to include the estimated number of zero counts.
includezeros logical value indicating whether to include one counts in the zero-one truncated

models.
onecount a numeric value indicating number of one counts if null trcount from object

will be assumed to be a number one counts.
range optional argument specifying range of selected Y values.
... currently does nothing.

Value

A list with observed name of the fitted model family degrees of freedom and observed and fitted
marginal frequencies.

Author(s)

Piotr Chlebicki

See Also

estimatePopsize() – where example of usage is provided

netherlandsimmigrant 29

netherlandsimmigrant Data on immigration in Netherlands

Description

This data set contains information about immigrants in four cities (Amsterdam, Rotterdam, The
Hague and Utrecht) in Netherlands that have been staying in the country illegally in 1995 and have
appeared in police records that year.

Usage

data("netherlandsimmigrant")

Format

Data frame with 1,880 rows and 5 columns.

capture Number of times a person has been captured by police.

gender Factor describing gender of the apprehended person.

age Factor describing age of apprehended person. Either bellow or above 40 years old.

reason Factor describing reason for being apprehended by police either illegal stay in Netherlands
or other reasons.

nation Factor with nation of origin of the captured person. There are 6 levels of this variable:
"American and Australia", "Asia", "North Africa", "Rest of Africa", "Surinam", "Turkey".

References

This data set and its description was provided in publication: van Der Heijden, P. G., Bustami, R.,
Cruyff, M. J., Engbersen, G., and Van Houwelingen, H. C. (2003). Point and interval estimation
of the population size using the truncated Poisson regression model. Statistical Modelling, 3(4),
305-322. doi:10.1191/1471082X03st057oa

plot.singleRStaticCountData

Diagnostic plots for regression and population size estimation.

Description

Simple diagnostic plots for singleRStaticCountData class objects.

Usage

S3 method for class 'singleRStaticCountData'
plot(
x,
plotType = c("qq", "marginal", "fitresid", "bootHist", "rootogram", "dfpopContr",

"dfpopBox", "scaleLoc", "cooks", "hatplot", "strata"),
confIntStrata = c("normal", "logNormal"),
histKernels = TRUE,

30 plot.singleRStaticCountData

dfpop,
...

)

Arguments

x object of singleRStaticCountData class.

plotType character parameter specifying type of plot to be made. The following list
presents and briefly explains possible type of plots:

• qq – The quantile-quantile plot for pearson residuals (or standardized pear-
son residuals if these are available for the model) i.e. empirical quantiles
from residuals are plotted against theoretical quantiles from standard distri-
bution.

• marginal – A plot made by matplot with fitted and observed marginal
frequencies with labels.

• fitresid – Plot of fitted linear predictors against (standardized) pearson
residuals.

• bootHist – Simple histogram for statistics obtained from bootstrapping (if
one was performed and the statistics were saved).

• rootogram – Rootogram, for full explanation see: Kleiber and Zeileis Vi-
sualizing Count Data Regressions Using Rootograms (2016), in short it is a
barplot where height is the square root of observed marginal frequencies
adjusted by difference between square root of observed and fitted marginal
frequencies connected by line representing fitted marginal frequencies. The
less of a difference there is between the 0 line and beginning of a bar the
more accurate fitt was produced by the model.

• dfpopContr – Plot of dfpopsize against unit contribution. On the plot is
y = x line i.e. what deletion effect would be if removing the unit from the
model didn’t effect regression coefficients. The further away the observa-
tion is from this line the more influential it is.

• dfpopBox – Boxplot of dfpopsize for getting the general idea about the
distribution of the "influence" of each unit on population size estimate.

• scaleLoc – The scale - location plot i.e. square root of absolute values of
(standardized) pearson residuals against linear predictors for each column
of linear predictors.

• cooks – Plot of cooks distance for detecting influential observations.
• hatplot – Plot of hat values for each linear predictor for detecting influen-

tial observations.
• strata – Plot of confidence intervals and point estimates for strata provided

in ... argument

confIntStrata confidence interval type to use for strata plot. Currently supported values are
"normal" and "logNormal".

histKernels logical value indicating whether to add density lines to histogram.

dfpop TODO

... additional optional arguments passed to the following functions:

• For plotType = "bootHist"

– graphics::hist – with x, main, xlab, ylab parameters fixed.
• For plotType = "rootogram"

popSizeEst 31

– graphics::barplot – with height, offset, ylab, xlab, ylim pa-
rameters fixed.

– graphics::lines – with x, y, pch, type, lwd, col parameters fixed.
• For plotType = "dfpopContr"

– dfpopsize – with model, observedPop parameters fixed.
– plot.default – with x, y, xlab, main parameters fixed.

• For plotType = "dfpopBox"

– dfpopsize – with model, observedPop parameters fixed.
– graphics::boxplot – with x, ylab, main parameters fixed.

• For plotType = "scaleLoc"

– plot.default – with x, y, xlab, ylab, main, sub parameters fixed.
• For plotType = "fitresid"

– plot.default – with x, y, xlab, ylab, main, sub parameters fixed.
• For plotType = "cooks"

– plot.default – with x, xlab, ylab, main parameters fixed.
• For plotType = "hatplot"

– hatvalues.singleRStaticCountData

– plot.default – with x, xlab, ylab, main parameters fixed.
• For plotType = "strata"

– stratifyPopsize.singleRStaticCountData

Value

No return value only the plot being made.

Author(s)

Piotr Chlebicki

See Also

estimatePopsize() dfpopsize() marginalFreq() stats::plot.lm() stats::cooks.distance()
hatvalues.singleRStaticCountData()

popSizeEst Extract population size estimation results.

Description

An extractor function with singleRStaticCountData method for extracting important information
regarding pop size estimate.

Usage

popSizeEst(object, ...)

S3 method for class 'singleRStaticCountData'
popSizeEst(object, ...)

32 predict.singleRStaticCountData

Arguments

object object with population size estimates.

... additional optional arguments, currently not used in singleRStaticCountData
class method.

Value

An object of class popSizeEstResults containing population size estimation results.

predict.singleRStaticCountData

Predict method for singleRStaticCountData class

Description

A method for predict function, works analogous to predict.glm but gives the possibility to get
standard errors of mean/distribution parameters and directly get pop size estimates for new data.

Usage

S3 method for class 'singleRStaticCountData'
predict(
object,
newdata,
type = c("response", "link", "mean", "popSize", "contr"),
se.fit = FALSE,
na.action = NULL,
weights,
cov,
...

)

Arguments

object an object of singleRStaticCountData class.

newdata an optional data.frame containing new data.

type the type of prediction required, possible values are:

• "response"– For matrix containing estimated distributions parameters.
• "link" – For matrix of linear predictors.
• "mean" – For fitted values of both Y and Y |Y > 0.
• "contr" – For inverse probability weights (here named for observation con-

tribution to population size estimate).
• "popSize" – For population size estimation. Note this results in a call to
redoPopEstimation and it is usually better to call this function directly.

by default set to "response".

se.fit a logical value indicating whether standard errors should be computed. Only
matters for type in "response", "mean", "link".

na.action does nothing yet.

redoPopEstimation 33

weights optional vector of weights for type in "contr", "popSize".
cov optional matrix or function or character specifying either a covariance matrix or

a function to compute that covariance matrix. By default vcov.singleRStaticCountData
can be set to e.g. vcovHC.

... arguments passed to other functions, for now this only affects vcov.singleRStaticCountData
method and cov function.

Details

Standard errors are computed with assumption of regression coefficients being asymptotically nor-
mally distributed, if this assumption holds then each of linear predictors i.e. each row of η =
Xvlmβ is asymptotically normally distributed and their variances are expressed by well known for-
mula. The mean µ and distribution parameters are then differentiable functions of asymptotically
normally distributed variables and therefore their variances can be computed using (multivariate)
delta method.

Value

Depending on type argument if one of "response", "link", "mean" a matrix with fitted values
and possibly standard errors if se.fit argument was set to TRUE, if type was set to "contr" a
vector with inverses of probabilities, finally for "popSize" an object of class popSizeEstResults
with its own methods containing population size estimation results.

See Also

redoPopEstimation() stats::summary.glm() estimatePopsize()

redoPopEstimation Updating population size estimation results.

Description

A function that applies all post-hoc procedures that were taken (such as heteroscedastic consistent
covariance matrix estimation or bias reduction) to population size estimation and standard error
estimation.

Usage

redoPopEstimation(object, newdata, ...)

S3 method for class 'singleRStaticCountData'
redoPopEstimation(
object,
newdata,
cov,
weights,
coef,
control,
popVar,
offset,
weightsAsCounts,
...

)

34 redoPopEstimation

Arguments

object object for which update of population size estimation results will be done.

newdata optional data.frame with new data for pop size estimation.

... additional optional arguments, currently not used in singleRStaticCountData
class method.

cov an updated covariance matrix estimate.

weights optional vector of weights to use in population size estimation.

coef optional vector of coefficients of regression on which to base population size
estimation. If missing it is set to coef(object).

control similar to controlPopVar in estimatePopsize(). If missing set to controls
provided on call to object.

popVar similar to popVar in estimatePopsize(). If missing set to "analytic".

offset offset argument for new data

weightsAsCounts

for singleRStaticCountData method used to specify whether weights should
be treated as number of occurrences for rows in data

Details

Any non specified arguments will be inferred from the object

Value

An object of class popSizeEstResults containing updated population size estimation results.

Examples

Create simple model
Model <- estimatePopsize(

formula = capture ~ nation + gender,
data = netherlandsimmigrant,
model = ztpoisson,
method = "IRLS"

)
Apply heteroscedasticity consistent covariance matrix estimation
require(sandwich)
cov <- vcovHC(Model, type = "HC3")
summary(Model, cov = cov,
popSizeEst = redoPopEstimation(Model, cov = cov))
Compare to results with usual covariance matrix estimation
summary(Model)

get confidence interval with larger significance level
redoPopEstimation(Model, control = controlPopVar(alpha = .000001))

regDiagSingleR 35

regDiagSingleR Regression diagnostics in singleRcapture

Description

List of some regression diagnostics implemented for singleRStaticCountData class. Functions
that either require no changes from glm class or are not relevant to context of singleRcapture are
omitted.

Usage

dfpopsize(model, ...)

S3 method for class 'singleRStaticCountData'
dfpopsize(model, dfbeta = NULL, ...)

S3 method for class 'singleRStaticCountData'
dfbeta(model, maxitNew = 1, trace = FALSE, cores = 1, ...)

S3 method for class 'singleRStaticCountData'
hatvalues(model, ...)

S3 method for class 'singleRStaticCountData'
residuals(
object,
type = c("pearson", "pearsonSTD", "response", "working", "deviance", "all"),
...

)

S3 method for class 'singleRStaticCountData'
cooks.distance(model, ...)

Arguments

model, object an object of singleRStaticCountData class.

... arguments passed to other methods. Notably dfpopsize.singleRStaticCountData
calls dfbeta.singleRStaticCountData if no dfbeta argument was provided
and controlMethod is called in dfbeta method.

dfbeta if dfbeta was already obtained it is possible to pass them into function so that
they need not be computed for the second time.

maxitNew the maximal number of iterations for regressions with starting points β̂ on data
specified at call for model after the removal of k’th row. By default 1.

trace a logical value specifying whether to tracking results when cores > 1 it will
result in a progress bar being created.

cores a number of processor cores to be used, any number greater than 1 activates
code designed with doParallel, foreach and parallel packages. Note that
for now using parallel computing makes tracing impossible so trace parameter
is ignored in this case.

type a type of residual to return.

36 regDiagSingleR

Details

dfpopsize and dfbeta are closely related. dfbeta fits a regression after removing a specific row
from the data and returns the difference between regression coefficients estimated on full data set
and data set obtained after deletion of that row, and repeats procedure once for every unit present
in the data.dfpopsize does the same for population size estimation utilizing coefficients computed
by dfbeta.

cooks.distance is implemented (for now) only for models with a single linear predictor and works
exactly like the method for glm class.

residuals.singleRStaticCountData (can be abbreviated to resid) works like residuals.glm
with the exception that:

• "pearson" – returns non standardized residuals.

• "pearsonSTD" – is currently defined only for single predictors models but will be extended to
all models in a near future, but for families with more than one distribution parameter it will
be a multivariate residual.

• "response" – returns both residuals computed with truncated and non truncated fitted value.

• "working" – is possibly multivariate if more than one linear predictor is present.

• "deviance" – is not yet defined for all families in singleRmodels() e.g. negative binomial
based methods.

• "all" – returns all available residual types.

hatvalues.singleRStaticCountData is method for singleRStaticCountData class for extract-
ing diagonal elements of projection matrix.

Since singleRcapture supports not only regular glm’s but also vglm’s the hatvalues returns a
matrix with number of columns corresponding to number of linear predictors in a model, where
kth column corresponds to elements of the diagonal of projection matrix associated with kth linear
predictor. For glm’s

W
1
2X

(
XTWX

)−1

XTW
1
2

where: W = E
(

Diag
(

∂2ℓ
∂ηT ∂η

))
and X is a model (lm) matrix. For vglm’s present in the package

it is instead :

Xvlm

(
XT

vlmWXvlm

)−1

XT
vlmW

where:

W = E

Diag

(
∂2ℓ

∂ηT
1 ∂η1

)
Diag

(
∂2ℓ

∂ηT
1 ∂η2

)
. . . Diag

(
∂2ℓ

∂ηT
1 ∂ηp

)
Diag

(
∂2ℓ

∂ηT
2 ∂η1

)
Diag

(
∂2ℓ

∂ηT
2 ∂η2

)
. . . Diag

(
∂2ℓ

∂ηT
2 ∂ηp

)
...

...
. . .

...

Diag
(

∂2ℓ
∂ηT

p ∂η1

)
Diag

(
∂2ℓ

∂ηT
p ∂η2

)
. . . Diag

(
∂2ℓ

∂ηT
p ∂ηp

)

is a block matrix constructed by taking the expected value from diagonal matrixes corresponding to
second derivatives with respect to each linear predictor (and mixed derivatives) and Xvlm is a model
(vlm) matrix constructed using specifications in controlModel and call to estimatePopsize.

Value

• For hatvalues – A matrix with n rows and p columns where n is a number of observations in
the data and p is number of regression parameters.

simulate 37

• For dfpopsize – A vector for which k’th element corresponds to the difference between point
estimate of population size estimation on full data set and point estimate of population size
estimation after the removal of k’th unit from the data set.

• For dfbeta – A matrix with n rows and p observations where p is a number of units in data
and p is the number of regression parameters. K’th row of this matrix corresponds to β̂− β̂−k

where β̂−k is a vector of estimates for regression parameters after the removal of k’th row
from the data.

• cooks.distance – A matrix with a single columns with values of cooks distance for every
unit in model.matrix

• residuals.singleRStaticCountData – A data.frame with chosen residuals.

Author(s)

Piotr Chlebicki, Maciej Beręsewicz

See Also

estimatePopsize() stats::hatvalues() controlMethod() stats::dfbeta() stats::cooks.distance()

Examples

For singleRStaticCountData class
Get simple model
Model <- estimatePopsize(

formula = capture ~ nation + age + gender,
data = netherlandsimmigrant,
model = ztpoisson,
method = "IRLS"

)
Get dfbeta
dfb <- dfbeta(Model)
The dfpopsize results are obtained via (It is also possible to not provide
dfbeta then they will be computed manually):
res <- dfpopsize(Model, dfbeta = dfb)
summary(res)
plot(res)
see vaious types of residuals:
head(resid(Model, "all"))

simulate Generating data in singleRcapture

Description

An S3 method for stats::simulate to handle singleRStaticCountData and singleRfamily
classes.

38 simulate

Usage

S3 method for class 'singleRStaticCountData'
simulate(object, nsim = 1, seed = NULL, ...)

S3 method for class 'singleRfamily'
simulate(object, nsim, seed = NULL, eta, truncated = FALSE, ...)

Arguments

object an object representing a fitted model.

nsim a numeric scalar specifying:

• number of response vectors to simulate in simulate.singleRStaticCountData,
defaults to 1L.

• number of units to draw in simulate.singleRfamily, defaults to NROW(eta).

seed an object specifying if and how the random number generator should be initial-
ized (‘seeded’).

... additional optional arguments.

eta a matrix of linear predictors

truncated logical value indicating whether to sample from truncated or full distribution.

Value

a data.frame with n rows and nsim columns.

Author(s)

Maciej Beręsewicz, Piotr Chlebicki

See Also

stats::simulate() estimatePopsize()

Examples

N <- 10000
###gender <- rbinom(N, 1, 0.2)
gender <- rep(0:1, c(8042, 1958))
eta <- -1 + 0.5*gender
counts <- simulate(ztpoisson(), eta = cbind(eta), seed = 1)
df <- data.frame(gender, eta, counts)
df2 <- subset(df, counts > 0)
check coverage with summary
mod1 <- estimatePopsize(

formula = counts ~ 1 + gender,
data = df2,
model = ztpoisson,
controlMethod = list(silent = TRUE)

)
mod1_sims <- simulate(mod1, nsim=10, seed = 1)
colMeans(mod1_sims)
mean(df2$counts)

stratifyPopsize 39

stratifyPopsize Estimate size of sub populations.

Description

A function that estimates sizes of specific sub populations based on a capture-recapture model for
the whole population.

Usage

stratifyPopsize(object, strata, alpha, ...)

S3 method for class 'singleRStaticCountData'
stratifyPopsize(object, strata, alpha, cov = NULL, ...)

Arguments

object an object on which the population size estimates should be based in singleRcapture
package this is a fitter singleRStaticCountData class object.

strata a specification of sub populations given by one of:

• formula – a formula to be applied to model.frame extracted from the ob-
ject.

• Logical vector with number of entries equal to number of rows in the dataset.

• A (named) list where each element is a logical vector, names of the list will
be used to specify names variable in returned object.

• Vector of names of explanatory variables. For singleRStaticCountData
method for this function this specification of strata parameter will result
in every level of explanatory variable having its own sub population for
each variable specified.

• If no value was provided the singleRStaticCountData method for this
function will itself create sub populations based on levels of factor variables
in model.frame.

alpha significance level for confidence intervals – Either a single numeric value or a
vector of length equal to number of sub populations specified in strata. If
missing it is set to .05 in singleRStaticCountData method.

... a vector of arguments to be passed to other functions. For singleRStaticCountData
method for this functions arguments in ... are passed to either cov if argument
provided was a function or vcov if cov argument was missing at call.

cov for singleRStaticCountData method an estimate of variance-covariance ma-
trix for estimate of regression parameters. It is possible to pass a function such
as for example sandwich::vcovHC which will be called as: foo(object, ...)
and a user may specify additional arguments of a function in ... argument. If
not provided an estimate for covariance matrix will be set by calling appropriate
vcov method.

40 summary.singleRmargin

Details

In single source capture-recapture models the most frequently used estimate for population size is
Horvitz-Thompson type estimate:

N̂ =

N∑
k=1

Ik
P(Yk > 0)

=

Nobs∑
k=1

1

1− P(Yk = 0)

where Ik = IYk>0 are indicator variables, with value 1 if kth unit was observed at least once and 0
otherwise and the inverse probabilistic weights weights for units observed in the data 1

P(Yk>0) are
estimated using fitted linear predictors.

The estimates for different sub populations are made by changing the Ik = IYk>0 indicator variables
to refer not to the population as a whole but to the sub populations that are being considered i.e. by
changing values from 1 to 0 if kth unit is not a member of sub population that is being considered
at the moment.

The estimation of variance for these estimates and estimation of variance for estimate of population
size for the whole population follow the same relation as the one described above.

Value

A data.frame object with row names being the names of specified sub populations either provided
or inferred.

See Also

vcov.singleRStaticCountData() estimatePopsize()

summary.singleRmargin Statistical tests of goodness of fit.

Description

Performs two statistical test on observed and fitted marginal frequencies. For G test the test statistic
is computed as:

G = 2
∑
k

Ok ln

(
Ok

Ek

)
and for χ2 the test statistic is computed as:

χ2 =
∑
k

(Ok − Ek)
2

Ek

where Ok, Ek denoted observed and fitted frequencies respectively. Both of these statistics converge
to χ2 distribution asymptotically with the same degrees of freedom.

The convergence of G,χ2 statistics to χ2 distribution may be violated if expected counts in cells
are too low, say < 5, so it is customary to either censor or omit these cells.

Usage

S3 method for class 'singleRmargin'
summary(object, df, dropl5 = c("drop", "group", "no"), ...)

summary.singleRStaticCountData 41

Arguments

object object of singleRmargin class.

df degrees of freedom if not provided the function will try and manually but it is
not always possible.

dropl5 a character indicating treatment of cells with frequencies < 5 either grouping
them, dropping or leaving them as is. Defaults to drop.

... currently does nothing.

Value

A chi squared test and G test for comparison between fitted and observed marginal frequencies.

Examples

Create a simple model
Model <- estimatePopsize(

formula = capture ~ .,
data = netherlandsimmigrant,
model = ztpoisson,
method = "IRLS"

)
plot(Model, "rootogram")
We see a considerable lack of fit
summary(marginalFreq(Model), df = 1, dropl5 = "group")

summary.singleRStaticCountData

Summary statistics for model of singleRStaticCountData class.

Description

A summary method for singleRStaticCountData class

Usage

S3 method for class 'singleRStaticCountData'
summary(
object,
test = c("t", "z"),
resType = "pearson",
correlation = FALSE,
confint = FALSE,
cov,
popSizeEst,
...

)

42 summary.singleRStaticCountData

Arguments

object object of singleRStaticCountData class.

test type of test for significance of parameters "t" for t-test and "z" for normal
approximation of students t distribution, by default "z" is used if there are more
than 30 degrees of freedom and "t" is used in other cases.

resType type of residuals to summarize any value that is allowed in residuals.singleRStaticCountData
except for "all" is allowed. By default pearson residuals are used.

correlation logical value indicating whether correlation matrix should be computed from
covariance matrix by default FALSE.

confint logical value indicating whether confidence intervals for regression parameters
should be constructed. By default FALSE.

cov covariance matrix corresponding to regression parameters. It is possible to give
cov argument as a function of object. If not specified it will be constructed
using vcov.singleRStaticCountData method. (i.e using Cramer-Rao lower
bound)

popSizeEst a popSizeEstResults class object. If not specified population size estimation
results will be drawn from object. If any post-hoc procedures, such as sand-
wich covariance matrix estimation or bias reduction, were taken it is possible to
include them in population size estimation results by calling redoPopEstimation.

... additional optional arguments passed to the following functions:

• vcov.singleRStaticCountData – if no cov argument was provided.
• cov – if cov parameter specified at call was a function.
• confint.singleRStaticCountData – if confint parameter was set to
TRUE at function call. In particular it is possible to set confidence level
in

Details

Works analogically to summary.glm but includes population size estimation results. If any addi-
tional statistics, such as confidence intervals for coefficients or coefficient correlation, are specified
they will be printed.

Value

An object of summarysingleRStaticCountData class containing:

• call – A call which created object.

• coefficients – A dataframe with estimated regression coefficients and their summary statis-
tics such as standard error Wald test statistic and p value for Wald test.

• residuals – A vector of residuals of type specified at call.

• aic – Akaike’s information criterion.

• bic – Bayesian (Schwarz’s) information criterion.

• iter – Number of iterations taken in fitting regression.

• logL – Logarithm of likelihood function evaluated at coefficients.

• deviance – Residual deviance.

• populationSize – Object with population size estimation results.

• dfResidual – Residual degrees of freedom.

vcov.singleRStaticCountData 43

• sizeObserved – Size of observed population.

• correlation – Correlation matrix if correlation parameter was set to TRUE

• test – Type of statistical test performed.

• model – Family class object specified in call for object.

• skew – If bootstrap sample was saved contains estimate of skewness.

See Also

redoPopEstimation() stats::summary.glm()

vcov.singleRStaticCountData

Obtain Covariance Matrix estimation.

Description

A vcov method for singleRStaticCountData class.

Usage

S3 method for class 'singleRStaticCountData'
vcov(object, type = c("Fisher", "observedInform"), ...)

Arguments

object object of singleRStaticCountData class.

type type of estimate for covariance matrix for now either expected (Fisher) informa-
tion matrix or observed information matrix.

... additional arguments for method functions

Details

Returns a estimated covariance matrix for model coefficients calculated from analytic hessian or
Fisher information matrix usually utilizing asymptotic effectiveness of maximum likelihood esti-
mates. Covariance type is taken from control parameter that have been provided on call that created
object if arguments type was not specified.

Value

A covariance matrix for fitted coefficients, rows and columns of which correspond to parameters
returned by coef method.

See Also

vcovHC.singleRStaticCountData() sandwich::sandwich()

	carcassubmission
	chao
	confint.singleRStaticCountData
	controlMethod
	controlModel
	controlPopVar
	estfun.singleRStaticCountData
	estimatePopsize
	estimatePopsizeFit
	farmsubmission
	marginalFreq
	netherlandsimmigrant
	plot.singleRStaticCountData
	popSizeEst
	predict.singleRStaticCountData
	redoPopEstimation
	regDiagSingleR
	simulate
	stratifyPopsize
	summary.singleRmargin
	summary.singleRStaticCountData
	vcov.singleRStaticCountData

