It is possible to explore interactions between drugs on an adr reporting.
This tutorial does not aim at covering the concepts underlying interactions in pharmacovigilance. It is about running them in practice.
In particular, we will not cover the differences between additive interactions, statistical/synergistic interactions.
compute_interaction()
use is shown at the end of the vignette.
We use built-in example dataset.
# ---- Tables ---- ####
demo <- demo_
drug <- drug_
# ---- Dictionary step ---- ####
d_drecno <- ex_$d_drecno
a_llt <- ex_$a_llt
# #### Data management #### ####
# ---- Drugs ---- ####
demo <-
demo |>
add_drug(
d_code = d_drecno,
drug_data = drug_
)
#> ℹ `.data` detected as `demo` table.
# ---- Adrs ---- ####
demo <-
demo |>
add_adr(
a_code = a_llt,
adr_data = adr_
)
#> ℹ `.data` detected as `demo` table.
# ---- Sex ---- ####
demo <-
demo |>
mutate(
sex = case_when(Gender == "1" ~ 1,
Gender == "2" ~ 2,
TRUE ~ NA_real_)
)
Additive effect of two covariates can be obtained by multiplying the Odds-Ratio of each.
mod3 <- glm(a_colitis ~ ipilimumab + sex,
data = demo,
family = "binomial")
mod_or <-
compute_or_mod(
summary(mod3)$coefficients,
estimate = Estimate,
std_er = Std..Error
) |> select(rn, orl, ci, up_ci)
mod_or
#> rn orl ci up_ci
#> <char> <char> <char> <num>
#> 1: (Intercept) 0.15 (0.08-0.28) 0.2830974
#> 2: ipilimumab 2.00 (1.14-3.53) 3.5274694
#> 3: sex 1.06 (0.69-1.62) 1.6167786
With reporting Odds-Ratio of ipilimumab being 2.00 and the reporting Odds-Ratio of sex being 1.06, the additive effect of both is 2.00 * 1.06.
Some way to approach multiplicative interactions is to compare the disproportionality signal in subgroups.
The compute_dispro()
function can be used for these
analyses, assuming the initial dataset is filtered on the appropriate
subgroup.
Say we want to investigate the interaction between ipilimumab and nivolumab and colitis reporting.
demo |>
filter(nivolumab == 1) |>
compute_dispro(
y = "a_colitis",
x = "ipilimumab"
)
#> # A tibble: 1 × 9
#> y x n_obs n_exp or or_ci ic ic_tail ci_level
#> <chr> <chr> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <chr>
#> 1 a_colitis ipilimumab 18 11.5 2.36 (1.18-4.73) 0.620 -0.123 95%
The overall analysis implies to perform additional analysis in different settings.
In our example:
Both IC and ROR can be used here.
The true statistical interaction is obtained with the following model
mod4 <- glm(a_colitis ~ ipilimumab + sex + ipilimumab * sex,
data = demo,
family = "binomial")
compute_or_mod(
summary(mod4)$coefficients,
estimate = Estimate,
std_er = Std..Error
)
#> rn Estimate Std..Error z.value Pr...z.. or
#> <char> <num> <num> <num> <num> <num>
#> 1: (Intercept) -2.2464633 0.3632657 -6.184077 6.246672e-10 0.1057727
#> 2: ipilimumab 2.7892022 0.8927900 3.124141 1.783247e-03 16.2680357
#> 3: sex 0.2910744 0.2363515 1.231532 2.181241e-01 1.3378641
#> 4: ipilimumab:sex -1.4905928 0.6289493 -2.369973 1.778940e-02 0.2252391
#> low_ci up_ci orl ci ci_level signif_ror
#> <num> <num> <char> <char> <char> <num>
#> 1: 0.05189925 0.2155687 0.11 (0.05-0.22) 95% 0
#> 2: 2.82742376 93.6007499 16.27 (2.83-93.60) 95% 1
#> 3: 0.84183934 2.1261543 1.34 (0.84-2.13) 95% 0
#> 4: 0.06565701 0.7726920 0.23 (0.07-0.77) 95% 0
compute_interaction()
The formula for the interaction between 3 variables (\(y\), the event of interest, \(x1\) and \(x2\), two potential explanatory factors) in information component is
\(log_2\frac{n_{y, x1, x2}}{n.expected_{interaction}}\)
with \(n.expected_{interaction}\) equal to
\(\frac{n_{x1, x2} * n_{y, x1} * n_{y, x2} * n.total}{n_{x1} * n_{x2} * n_y}\)
The parameters are read as follows
Parameter | Case |
---|---|
\(n_{x1}\) | number of cases reporting x1 |
\(n_{x1, x2}\) | number of cases reporting x1 AND x2 |
\(n_{y, x1, x2}\) | number of cases reporting x1 AND x2 AND y |
\(n.total\) | total number of cases in the study population |
The credibility interval is calculated as for the usual IC.
compute_interaction()
produces this interaction
statistic.